GAS EXCHANGE in "Animals"

 Cells require O₂ for aerobic respiration and expel CO₂ as a waste product

Fick's Law of Diffusion

- Gas exchange involves the diffusion of gases across a membrane
- Rate of diffusion (R) is governed by Fick's Law:
- $R = \underline{DA \triangle p}$

D= diffusion constant (size of molecule, membrane permeability, etc)

A= area over which diffusion occurs

 $\triangle p$ = pressure difference between sides of the membrane

d = distance across which diffusion must occur

Fick's Law of Diffusion

$$R = \underline{DA} \triangle \underline{p}$$

To maximize diffusion, R can be increased by:

Increasing A (area over which diffusion occurs)

Increasing $\triangle p$ (pressure difference between sides of the membrane)

Decreasing d (distance across which diffusion must occur)

Evolutionary changes have occurred to maximize R

Figure 42.18 The role of gas exchange in bioenergetics

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

GAS EXCHANGE in "Animals"

 The part of the organism across which gases are exchanged with the environment is the respiratory surface

Respiratory Surfaces

- Must be moist
 - plasma membranes must be surrounded by water to be stable
- Must be sufficiently large
 - maximize A in Fick's Law

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Cell Membranes

- in unicellular organisms
- some simpler animals (sponges, cnidarians, flatworms)

Sponge Body Plan

- Respiratory surface = a single layer of epithelial cells
 - separates outer **respiratory medium** (air or water) from the organism's transport system (blood)

• Skin (cutaneous respiration)

- Skin must be moist
- organisms with flat or wormlike bodies so skin in sufficient surface area
- or in frogs and some turtles to supplement respiration using lungs

- Specialized region of body is folded and branched to provide large surface area
- This maximizes A in Fick's Law
- Also decrease d by bringing the respiratory medium close to the internal fluid
- Three such systems:
 - Gills (Aquatic organisms)
 - Trachea (insects)
 - Lungs (terrestrial vertebrates)

Figure 42.19 Diversity in the structure of gills, external body surfaces functioning in

Gills

- most aquatic organisms
- outfoldings of the body surface specialized for gas exchange
- Water is the respiratory medium

Water as Respiratory Medium

- Respiratory surface always moist
- Oxygen content of water is much less than that of air
- denser medium so harder to ventilate

Ventilation

- Any method that increases the flow of the respiratory medium across the respiratory surface
- This maximizes∆p in Fick's Law
 - By constantly have new air or new water with more oxygen

Ventilation

- requires a lot of energy to ventilate gills b/c
 water is denser than air
- pumping operculum, ram ventilation

Gills

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Countercurrent Exchange

- Enhances gas exchange in the gills of fish
- blood is continually loaded with O_2 b/c it meets water with increasing O_2 concentration
 - Increases ∆p in Fick's Law

Air as respiratory medium

- Higher oxygen concentration
- ventilation is easier b/c air is less dense
- respiratory surface loses water to air by evaporation

Air as respiratory medium

- Solution...
 - fold respiratory surface inside the body

Trachea

- Air tubes that branch throughout the body
- finest tubes (tracheoles) extend to nearly every cell in the body
- gas diffuses across moist epithelium that lines the terminal ends

Trachea

- Found in insects
- Open Circulatory system of insects is NOT involved in transporting gases
- Ventilation
 - diffusion
 - body movements

Lungs

- Localized in one area of body
 - circulatory system must transport gases

Lungs

- Ventilation
 - Positive pressure breathing frogs

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

a.

b.

Lungs

- Ventilation
 - Negative pressure breathing- mammals

Negative pressure breathing

Copyright © The MoGraw-Hill Companies, Inc. Permission required for reproduction or display.

Negative pressure breathing Inspiration Sternocleidomastoid muscles contract (for forced inspiration) Muscles contract Diaphragm contracts

Lungs

Lungs

- Ventilation
 - air sacs act as bellows in birds
 - air flows in one direction during both inhalation & exhalation

Lungs of Birds

a. b.

Transport of Gases

 Occurs in the circulatory system when needed

Transport of Gases

- O₂ is transported by respiratory pigments
 - hemoglobin on red blood cells or hemocyanin in the plasma

Hemoglobin Structure

Transport of Gases

• CO₂ is transported by respiratory pigments and dissolved in the plasma and in red blood cells as bicarbonate ion (HCO₃-)

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Regulation of Breathing by Chemo-Midbrain receptors Brain stem Increased breathing respiratory center Medulla oblongata Peripheral Central chemoreceptors (aortic and chemoreceptors carotid bodies) Decreased Decreased cerebrospinal blood pH fluid pH Increased blood CO, concentration (Pco₂) Negative feedback ⊖ Inadequate correction breathing

Gas Exchange in Plants

- Stomata
 - tiny pores on the underside of leaves
 - lead to air spaces in the mesophyll

Leaf — Cross Section

Gas Exchange in Plants

- Guard cells
 - regulate the opening & closing of stomata
 - turgid stomata open, flaccid stomata close

Figure 36.12x Stomata on the underside of a leaf

Figure 36.12 An open (left) and closed (right) stoma of a spider plant (Chlorophytum colosum) leaf

Cells turgid/Stoma open

Cells flaccid/Stoma closed

(a) Changes in guard cell shape and stomatal opening and closing (surface view)

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

(b) Role of potassium in stomatal opening and closing

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Guard cells' turgor pressure

- K+ into guard cells -- water follows due to osmosis, cells become turgid
- K+ out of guard cells -- water moves out and cells become flaccid

Stomata

- Generally open during the day & closed at night
- Cues:
 - Light
 - depletion of CO₂
 - Circadian rhythms biological clock