Primordial Germ Cells

- Produce gametes (egg and sperm)
- How are primorial germ cells determined?
 - Cytoplasmic determinants in egg
 - Proteins and mRNA are localized in region called the germ plasm
 - Nematodes, flies, frogs
 - Interactions between neighboring cells
 - Salamander, mammals

Nematodes

Parascaris C. elegans

Nematode germ cells

- Animal pole
 - No yolk
 - Produces most cells
- Vegetal pole
 - Yolk
- Equatorial cleavage plane
- Chromosome diminution
 - DNA fragments and only part of the DNA is present in somatic cells

Boveri's experiments on Parascaris

C. elegans

- P-granules migrate to P4 blastomere
 - Alters transcription
- PIE-1 protein activated
 - Blocks most gene transcription

Drosophila melanogaster

Germ cell determination in Drosophila

- Pole granules (A) form at posterior pole
- Pole cells (B) migrate to posterior of developing embryo (ninth division)

Cystocyte development in Drosophila

Genes involved in pole cell formation in Drosophila

- Germ cell-less
- Polar granule component
- Posterior group
 - Oscar
 - Nanos
 - Vasa
 - Piwi and Augergine

Localization of the germ cell-less gene in Drosophila

Germ cell-less (gcl))

- mRNA produced by nurse cells and deposited into egg
- mRNA transported to posterior pole of egg (pole plasm)
- Transcribed into protein early in development
- gcl protein enters nuclei and alters gene transcription
- Necessary for pole cell production
- Human homologues necessary for spermatogenesis

Polar granule component (Pgc)

- Non-coding RNA
- Inhibits transcription by blocking RNA polymerase II phosphorylation
- When mutated pole cells develop into somatic cells

Oskar

- Involved in localizing factors (proteins and mRNA) necessary for pole cell formation to the posterior end of developing egg
- Expressing abnormal expression of Oskar causes production of extra pole cells

Nanos

- Prevents development of somatic cells
- Blocks translation
- Localized by oskar

Vasa, Piwi, Aubergine

- Vasa initiates germ cell differentiation and meiosis
 - RNA binding protein
- Piwi, Aubergine necessary for germ cells to develop into stem cells in gonad
 - Repress transcription

Germ cell migration in Drosophila

Germ Cell Determination in Vertebrates

- Frogs
- Zebrafish
- Mammals

Frogs

- Vegetal region contains Drosophila pole plasm homologue
 - For example: Xcat2 homologue of Nanos
 - Germ plasm granules are present in unfertilized egg
 - Tethered to yolk
 - After fertilization microtubules position germ plasm granules in vegetal pole

Zebrafish

- Germ plasm polar granules containing Drosophila pole plasm homologue
 - For example: Nanos and Vasa
- Maternally supplied
- Associated with cleavage furrow
- At 1000 cell stage only four cells have germ plasm
 - 4 clusters of primordial germ cells form

Mammals

- Eggs do not contain germ plasm
- Induction causes germ cell production

Testis and Associated Structures

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 27.9b

27-21

Endocrine Control

As hypothalamus matures it produces gonadotropin-releasing hormone (GnRH)

- GnRH stimulates anterior pituitary cells (gonadotropes) to secrete:
 - follicle stimulating hormone (FSH)
 - stimulates Sertoli cells to secrete androgen-binding protein that binds testosterone keeping it in the seminiferous tubule lumen to stimulate spermatogenesis and raising sperm count
 - luteinizing hormone (LH)
 - stimulates interstitial cells to produce testosterone

Primordial germ cell PGC

Spermatogenesis

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Histology of Testis

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

a: Copyright by R.G. Kessel and R.H. Kardon, Tissues and Organs: A Text-Atlas of Scanning Electron Microscopy, 1979, W.H. Freeman, All rights reserved; b: © Ed Reschke

Spermatozoon

Sperm structure:

Haploid nucleus.

Tipped with an acrosome.

Contains enzymes that help the sperm penetrate to the egg.

A large number of mitochondria provide ATP to power the flagellum

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

a: Visuals Unlimited

Uterus

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

28-27

Anatomy of Ovary

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Oogenesis and Follicle Development

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 28.11

Folliculogenesis

 folliculogenesis – the development of the follicles around the egg than undergoes oogenesis

primordial follicles

- consists of a primary oocyte in early meiosis
- surrounded by a single layer of squamous follicular cells
- most wait 13 to 50 years before they develop further
- adult ovary has 90% to 95% primordial follicles

primary follicles

have larger oocytes and follicular cells that still form a single layer

secondary follicles

- still larger oocytes and follicular cells now stratified (granulosa cells)
- zona pellucida layer of glycoprotein gel secreted by granulosa cells around the oocyte
- theca folliculi connective tissue around the granulosa cells condenses to form a fibrous husk

Folliculogenesis

tertiary follicles

- · granulosa cells begin secreting follicular fluid
- fluid-filled cavity, the antrum
- **cumulus oophorus** a mound of granulosa cells on one side of the antrum that covers the oocyte and secures it to the follicular wall

- mature (graafian) follicles

- normally only one follicle from each month's cohort becomes a mature follicle destined to ovulate
- remainder degenerate

Histology of Ovarian Follicles

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 28.12b

Endoscopic View of Ovulation

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 28.15

Pituitary-Ovarian Axis

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Growth of Primary Oocyte

Increase in Gene Expression

Lampbrush Chromosomes

Increased number of Nucleoli
gene amplification

Increased number of Organelles

Yolk Production Egg Types

> Isolecithal – mammals, echinoderms Mesolecithal – amphibians Telolecithal – birds, fish, reptiles Centrolecithal – arthropods

Isolecithal

Frog Ovary 100x

Egg Envelopes

I. Produced within the ovary Vitelline Membrane sea urchin, frog, bird Zona pellucida mammal

II. Produced outside of the ovary frog Ovary 400x jelly albumin & shell membranes