Homeostasis

- the steady-state physiological condition of the body
- Ability to regulate the internal environment
- important for proper functioning of cells

Homeostasis

Thermoregulation

how organisms regulate their body temperature

Osmoregulation

 how organisms regulate solute balance and gain or loss of water

Excretion

 how organisms get rid of nitrogen-containing waste products of metabolism, such as urea

Homeostasis

• Maintenance usually involves negative feedback loops

Feedback mechanisms in human thermoregulation

Figure 44.4 The relationship between body temperature and ambient (environmental) temperature in an ectotherm and an endotherm

Figure 44.5 Countercurrent heat exchangers

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Excretion

- Nitrogen-containing wastes from the metabolism of proteins and nucleic acids are particularly bad.
- the nitrogenous waste product is ammonia (NH₃)

Ammonia

- most efficient to excrete directly
- Very toxic, soluble in water
 - must be excreted in dilute solutions
- Excreted by most aquatic organisms
- diffuses across body surface or gills

Terrestrial animals

- Can't afford to lose a lot of water
- excrete substances that can be excreted in more concentrated form
- use energy to convert ammonia to a less toxic molecule
 - urea or uric acid

Urea

- Much less toxic
- excreted by many terrestrial animals
- produced in liver
 - metabolic cycle combines ammonia & carbon dioxide

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Amino acids and nucleic acids

Uric Acid

- Excreted by some land snails, insects, birds
 & reptiles
- Not soluble in water
- excreted as a precipitate after water has been reabsorbed

Urea vs Uric Acid

- Both adaptations to conserve water
- depends on mode of reproduction...
- animals with shelled eggs excrete uric acid

Osmoregulation

- Cells cannot survive a net gain or loss of water
 - common problem to all animals
 - solutions differ

Osmoregulation

Two basic solutions:

- Be isotonic to the environment
 - osmoconformers
- Actively discharge (in hypotonic environments) or take in (in hypertonic environments) water
 - osmoregulators

Marine Environments

- Most marine invertebrates are osmoconformers
 - may still regulate specific ion concentrations
- Most marine vertebrates osmoregulate
 - Chondrichthyes
 - isotonic but lower salt conc. & high urea conc.
 - Osteichthyes
 - hypotonic to environment

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Freshwater Environments

- Problem of water entering body via osmosis
- Protozoa (amoeba & paramecium)
 - use contractile vacuoles

Paramecium

Freshwater Environments

Freshwater Bony Fish

Copyright © The MoGraw-Hill Companies, Inc. Permission required for reproduction or display.

Terrestrial Environments

- Many adaptations to prevent water loss
 - shells, layers of dead skin, waxy cuticle, exoskeletons, scales, etc.
- Drink water & eat moist foods
- Specialized organs to conserve water
 - ex: kidneys

The human excretory system

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Mammalian Excretory System

- renal artery and renal vein
- Urine exits the kidneys through the ureter
- The ureters of both kidneys enter the urinary bladder
- Urine leaves the body via the urethra
 - Sphincter muscles between the bladder and urethra control urination

The human kidney

Kidney

- outer renal cortex & inner renal medulla
- within each region are microscopic excretory tubules called nephrons, collecting ducts and capillaries
- the **nephron** is the functional unit of the kidney
- renal pelvis

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

1. Filtration of blood

- blood pressure forces any small molecules from the blood into the lumen in the bowman's capsule
- a nonselective process with regard to small molecules
- filtrate initially consists of water, urea, salts, glucose, vitamins, etc.

• 2. Secretion

- substances are transported into the filtrate
- most commonly occurs in the proximal and distal tubules
- a very selective process involving both passive and active transport

• 3. Reabsorption

- the selective transport from the filtrate to the interstitial fluid or blood plasma
- Sugars, vitamins, organic nutrients and water are all reabsorbed

Figure 44.22 The nephron and collecting duct: regional functions of the transport

- 4. Excretion
 - Get rid of the wastes

Key functions of the nephron

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 44.23 How the human kidney concentrates urine: the two-solute model (Layer

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Figure 44.23 How the human kidney concentrates urine: the two-solute model (Layer

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Figure 44.23 How the human kidney concentrates urine: the two-solute model (Layer

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Characteristics of Urine

- The kidneys can produce a hypertonic urine when it is necessary
- can excrete a hypotonic urine
- Water and salt reabsorption are subject to nervous and hormonal control

ADH (Antidiuretic Hormone)

- released when the solute concentration of the blood rises
- makes the transport epithelium of the distal tubules and the collecting ducts more permeable to water
- alcohol inhibits production of ADH

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Evolution of the Vertebrate Kidney

- 1st in freshwater fish
- Fish, amphibian & reptile kidneys can only produce urine that is isotonic or hypotonic to their body fluids
- Terrestrial reptiles can reabsorb water in cloaca

Evolution of the Vertebrate Kidney

- Only birds and mammals have loops of Henle in their nephrons
 - Hypertonic urine
 - Mammals have more juxtamedullary nephrons than birds

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Osmoregulation by Vertebrates

Urine concentration Vertebrate relative to blood

Amphib- Strongly ian hypotonic

Marine reptile

Isotonic

Marine Weakly bird hypertonic

Marine Strongly mammal hypertonic

Terrestrial Weakly bird hypertonic

Desert Strongly mammal hypertonic

-Skin absorbs Na⁺ from water

Drinks seawater
Salt gland secretes
excess salts

Drinks seawater

Salt gland secretes excess salts Excretes weakly hypertonic urine

Does not drink seawater

Drinks fresh water

