Cleavage

EP-cadherin

- Cell adhesion molecule
- Helps hold together blastomeres
- Translated from mRNA deposited in oocyte

EP-cadherin necessary for cell adhesion

 Oocyte was treated with anti-sense RNA's against EP-cadherin mRNA

Amphibian Axis

- Animal hemispheres will become ectoderm
- Vegetal hemispheres will become endoderm
- Equatorial region will become mesoderm

Early Fate Map

Movement of Dorsalizing Factors

Spemenn's Experiment

Early nuclei are equivalent.

DEVELOPMENTAL BIOLOGY, Eighth Edition, Figure 10.16 © 2006 Sinauer Associates, Inc.

Spemann transplantation experiments

Early gastrula cell fate not determined Late gastrula cell fate determined

(A) TRANSPLANTATION IN EARLY GASTRULA

(B) TRANSPLANTATION IN LATE GASTRULA

The Organizer

Dorsal lip induces formation of dorsal structures.

Vegetal Cell Transplantation

Vegetal Cell Transplatation

The Organizer

Diffusible factor found in dorsal lip cells
It itself is induced by underlying vegetal cells

Nieuwkoop center – beta catenin

Functions as a transcription factor and cadherin binding protein

Beta catenin mRNA

Beta-catenin activity in Sea Urchins

Determines mesoderm

Found in micromeres and veg 2 layer

Found in nucleus when active

Beta-catenin controlled by Wnt

Wnt turns on beta-catenin activity

Allows beta-catenin to enter nucleus and act like a transcription factor

Wnt Pathway

Spemann

Blastomeres
equivalent when
they both have gray
crescent.

Gray crescent necessary for dorsal structures

Nieuwkoop Center

Nieuwkoop Center Specifies Dorsal Side

Expression of paraxial protocadherin

Beta-catenin localization

How does beta-catenin become localized to dorsal side?

Beta-catenin evenly distributed before fertilization.

Dsh and GBP translocated to dorsal side by kinesin

- Rides on microtubule tracks laid down after fertilization during cortical rotation
- Dorsal surface enriched in Dsh and GBP
- Dsh and GBP inhibit GSK3
 - Beta-catenin degrades on ventral side and is stabilized on dorsal side

Beta-catenin activates other genes

Turns on goosecoid gene in organizer

Goosecoid mRNA can induce new axis

- Activates involution
- Determines dorsal mesoderm
- Represses Wnt8
- Important in brain formation

VegT and Veg1

Present in vegetal cortical region

Genes required for endoderm and mesoderm formation

VegT antisence RNA causes epidermis only

Xnr Gradient

High Xnr – Organizer, goosecoid

Med Xnr – Lateral mesoderm

Low Xnr > high BMP4 + Xwnt8 – Ventral mesoderm

Neural ectoderm induced by soluble factor?

Controlled by goosecoid and beta-catenin?

Induction of ectopic neural structures

Neural structures <u>default</u> – epidermis induced by BMP's

BMP – bone morphogenic protein

Induce ectoderm to become epidermis

Organizer secretes factors that block BMP from acting

BMP inhibitors

Noggin, Chordin and Follistatin

Diffusable proteins

Induced dorsal ectoderm to become neural

Dorsalizes mesoderm cells

Inhibits BMP's

Found in dorsal lip then in the notochord

Noggin mRNA rescues Dorsal Structures

Localization of Noggin

Localization of Chordin mRNA

BMP Gradient Controls Dorsal/Ventral Axis

How is the ant/pos axis determined?

During neurulation beta-catenin forms a gradient Greatest concentration at organizer

Becomes anterior end

Wnt Gradient Controls Anterior/Posterior Axis

