Frog Life Cycle

How did multicellular organism evolve?

Two examples:

Volvox – colony of organisms evolved specialized cells

Dictyostelium – individual cells for cell aggragates that act like a multicellular organism

Volvocales

Life cycle of Dictyostelium

Chemotaxis of Dictyostelium

Dictyostelium "Slug"

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

9.2 μm

CNRI/Photo Researchers Inc.

Eukaryotic Chromosomes

- Chromosomes must be replicated before cell division.
- -Replicated chromsomes are connected to each other at their kinetochores
- -cohesin complex of proteins holding replicated chromosomes together
- -sister chromatids: 2 copies of the chromosome within the replicated chromosome

Eukaryotic Cell Cycle

interphase

The eukaryotic cell cycle has 5 main phases:

- 1. G₁ (gap phase 1)
- 2. S (synthesis)
- 3. G₂ (gap phase 2) J
- 4. M (mitosis)
- 5. C (cytokinesis)

The length of a complete cell cycle varies greatly among cell types.

Interphase

Interphase is composed of:

G₁ (gap phase 1) – time of cell growth

S phase – synthesis of DNA (DNA replication)

- 2 sister chromatids are produced

G₂ (gap phase 2) – chromosomes condense

Interphase

Following S phase, the sister chromatids appear to share a centromere.

In fact, the centromere has been replicated but the 2 centromeres are held together by cohesin proteins.

Proteins of the kinetochore are attached to the centromere.

Microtubules attach to the kinetochore.

Interphase

During G₂ the chromosomes undergo condensation, becoming tightly coiled.

Centrioles (microtubule-organizing centers) replicate and one centriole moves to each pole.

Mitosis is divided into 5 phases:

- 1. prophase
- 2. prometaphase
- 3. metaphase
- 4. anaphase
- 5. telophase

Prophase:

- -chromosomes continue to condense
- -centrioles move to each pole of the cell
- -spindle apparatus is assembled
- -nuclear envelope dissolves

Prometaphase:

- -chromosomes become attached to the spindle apparatus by their kinetochores
- a second set of microtubules is formed from the poles to each kinetochore
- -microtubules begin to pull each chromosome toward the center of the cell

Metaphase:

- -microtubules pull the chromosomes to align them at the center of the cell
- -metaphase plate: imaginary plane through the center of the cell where the chromosomes align

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Anaphase:

- -removal of cohesin proteins causes the centromeres to separate
- -microtubules pull sister chromatids toward the poles
- in anaphase A the kinetochores are pulled apart
- -in anaphase B the poles move apart

Telophase:

- -spindle apparatus disassembles
- -nuclear envelope forms around each set of sister chromatids
- -chromosomes begin to uncoil
- -nucleolus reappears in each new nucleus

Cytokinesis

- Cytokinesis cleavage of the cell into equal halves
- -in animal cells constriction of actin filaments produces a cleavage furrow

The cell cycle is controlled at three checkpoints:

- 1. G₁/S checkpoint
 - -the cell "decides" to divide
- 2. G₂/M checkpoint
 - -the cell makes a commitment to mitosis
- 3. late metaphase (spindle) checkpoint
 - -the cell ensures that all chromosomes are attached to the spindle

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- cyclins proteins produced in synchrony with the cell cycle
- regulate passage of the cell through cell cycle checkpoints

- cyclin-dependent kinases (Cdks) enzymes that drive the cell cycle
- -activated only when bound by a cyclin

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Anchorage, cell density, and chemical growth factors affect cell division

- Factors that control cell division
 - Presence of essential nutrients
 - Growth factors, proteins that stimulate division
 - Presence of other cells causes density-dependent inhibition
 - Contact with a solid surface; most cells show anchorage dependence

Cells anchor to dish surface and divide.

When cells have formed a complete single layer, they stop dividing (density-dependent inhibition).

If some cells are scraped away, the remaining cells divide to fill the dish with a single layer and then stop (density-dependent inhibition).

Copyright @ 2009 Pearson Education, Inc.

Growth factors signal the cell cycle control system

- Effects of a growth factor at the G₁ checkpoint
 - A growth factor binds to a receptor in the plasma membrane
 - Within the cell, a signal transduction pathway propagates the signal through a series of relay molecules
 - The signal reaches the cell cycle control system to trigger entry into the S phase

At G₁/S checkpoint:

- -G₁ cyclins accumulate
- -G₁ cyclins bind with Cdc2 to create the active G₁/S Cdk
- -G₁/S Cdk phosphorylates a number of molecules that ultimately increase the enzymes required for DNA replication

At the spindle checkpoint:

- -the signal for anaphase to proceed is transmitted through anaphase-promoting complex (APC)
- -APC activates the proteins that remove the cohesin holding sister chromatids together

Growth factors:

- -can influence the cell cycle
- -trigger intracellular signaling systems
- -can override cellular controls that otherwise inhibit cell division
- platelet-derived growth factor (PDGF) triggers cells to divide during wound healing

Control of the Cell Cycle

Cancer is a failure of cell cycle control.

Two kinds of genes can disturb the cell cycle when they are mutated:

- 1. tumor-suppressor genes
- 2. proto-oncogenes

Control of the Cell Cycle

Tumor-suppressor genes:

- -prevent the development of many cells containing mutations
- -for example, *p53* halts cell division if damaged DNA is detected
- -p53 is absent or damaged in many cancerous cells

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Control of the Cell Cycle

Proto-oncogenes:

- -some encode receptors for growth factors
- -some encode signal transduction proteins
- -become oncogenes when mutated
- oncogenes can cause cancer when they are introduced into a cell

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Mammalian cell

Proto-oncogenes

Growth factor receptor:

more per cell in many breast cancers.

Ras protein:

activated by mutations in 20–30% of all cancers.

Src kinase:

activated by mutations in 2-5% of all cancers.

Tumor-suppressor Genes

Rb protein:

mutated in 40% of all cancers.

p53 protein:

mutated in 50% of all cancers.

Overview of Meiosis

Meiosis is a form of cell division that leads to the production of gametes.

gametes: egg cells and sperm cells

-contain half the number of chromosomes of an adult body cell

Adult body cells (somatic cells) are diploid, containing 2 sets of chromosomes.

Gametes are **haploid**, containing only 1 set of chromosomes.

Overview of Meiosis

Sexual reproduction includes the fusion of gametes (fertilization) to produce a diploid zygote.

Life cycles of sexually reproducing organisms involve the alternation of haploid and diploid stages.

Some life cycles include longer diploid phases, some include longer haploid phases.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

b. Most animals

Features of Meiosis

Meiosis includes two rounds of division – meiosis I and meiosis II.

During meiosis I, homologous chromosomes (homologues) become closely associated with each other. This is synapsis.

Proteins between the homologues hold them in a synaptonemal complex.

Prophase I:

- -chromosomes coil tighter
- -nuclear envelope dissolves
- -homologues become closely associated in synapsis
- -crossing over occurs between non-sister chromatids

MEIOSIS I: Homologous chromosomes separate

Copyright © 2009 Pearson Education, Inc.

MEIOSIS II: Sister chromatids separate

TELOPHASE II AND CYTOKINESIS

Cleavage furrow

Sister chromatids separate

Cells forming

Copyright @ 2009 Pearson Education, Inc.

Metaphase I:

- -terminal chiasmata hold homologues together following crossing over
- -microtubules from opposite poles attach to each *homologue*, not each sister chromatid
- -homologues are aligned at the metaphase plate side-by-side
- -the orientation of each pair of homologues on the spindle is random

Anaphase I:

- -microtubules of the spindle shorten
- -homologues are separated from each other
- -sister chromatids remain attached to each other at their centromeres

Telophase I:

- -nuclear envelopes form around each set of chromosomes
- -each new nucleus is now haploid
- -sister chromatids are no longer identical because of crossing over

Meiosis II resembles a mitotic division:

- -prophase II: nuclear envelopes dissolve and spindle apparatus forms
- metaphase II: chromosomes align on metaphase plate
- -anaphase II: sister chromatids are separated from each other
- -telophase II: nuclear envelope re-forms; cytokinesis follows

Meiosis vs. Mitosis

Meiosis is characterized by 4 features:

- 1. Synapsis and crossing over
- 2. Sister chromatids remain joined at their centromeres throughout meiosis I
- Kinetochores of sister chromatids attach to the same pole in meiosis I
- DNA replication is suppressed between meiosis I and meiosis II.

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Meiosis vs. Mitosis

Meiosis produces haploid cells that are not identical to each other.

Genetic differences in these cells arise from:

- -crossing over
- -random alignment of homologues in metaphase I (independent assortment)

Mitosis produces 2 cells identical to each other.