Embryology

Introduction

What is embryology?

- Study of the developing embryo (embryogenesis).
- What is an embryo?
 - Multicellular
 - Diploid
 - Fertilized egg to hatching, birth or germination

Is embryology the same as developmental biology?

- Embryology is part of Developmental Biology
- Developmental biology includes developmental processes after the embryonic stages.
 - Metamorphosis in insects
 - Development of sex specific characteristics
 - Repair of damaged tissues and organs
 - Regeneration
 - Cancer and tumors development out of control

How are embryos studied?

Anatomically

 Traces the fates of cells and tissues during embryogenesis

Experimentally

Support hypotheses on how and why embryonic events occur.

Genetically

 How information encoded in DNA controls embryogenesis

Tunicate

Adult Larvae

Fig. 1.1

Zygote to Adult

Fig. 1.14

Fig. 1.2

Major Questions in Embryology

Growth – mitosis is controlled to produced the correct number of cells.

Differentiation – single cell, with single genome produces hundreds of cell types.

Morphogenesis – cell move during development.

Reproduction – embryogenesis starts with information encoded in the egg cell.

Box 1B

Epigenesis vs. Preformation

- Preformation
 - complete form present in egg or sperm in miniature
- Epigenesis
 - embryos are formed de novo

Fig. 1.4

Fig. 1.3

Christian Pander (1820's)

- Primary Germ Layers
- Chick embryo forms three layers of cells that give rise to specific organ systems.

Diploblastic

- Jellyfish, hydra
- Only two primary germ layers
 - Ectoderm and endoderm

Triploblastic

- Most animals
- Three primary germ layers
 - Ectoderm outer layer
 - Skin, nervous system
 - Endoderm inner layer
 - Digestive tract, lungs
 - Mesoderm middle layer
 - Muscles, blood, heart, kidneys, bones, gonads

Box 1C

Germ layers	Organs	
Endoderm	gut, liver, lungs	gut
Mesoderm	skeleton, muscle, kidney, heart, blood	muscle, heart, blood
Ectoderm	epidermis of skin, nervous system	cuticle, nervous system

Cell Differentiation

Fig. 1.5

Determinants vs. Regulation

Determinants – factors distributed in egg asymmetrically determine cell fate.

Regulation – cell interactions determine cell fate.

Weismann's Nuclear Determinant

Fig. 1.6

Roux Mosaic Development

Fig. 1.7

Driesch – contradicts Roux

Normal development of sea urchin larva from two-cell stage

Driesch's separation of cells at two-cell stage resulted in the death of one cell.

The surviving cell developed into a small but otherwise normal larva

Induction

- Spemann and Mangold
 - New body axis induced by dorsal lip of blastopore
 - Spemann Organizer
 - Organs are constructed from simpler structures that interact, therefore preformation cannot occur

Notochord

Directs the development of nervous system in vertebrates.

Genetics and Embryology

DNA contains genes that code for proteins that control development.

Change gene > change protein > alter development

Recessive mutation (e.g. vestigial)

Semi-dominant mutation (e.g. Brachyury)

Fig. 1.12

Fig. 1.13

Genetic Tools

Lethal mutations

Semi-dominant

Recessive

Conditional mutations

Temperature sensitive mutations

Gene knock-out

Gene silencing (gene knockdown)

Cleavage

Fig. 1.14

Fundamental Developmental Processes

- Pattern formation overall body plan
 - Polarity
 - Antero-posterior axis
 - Dorso-ventral axis
 - Segmentation
- Morphogenesis movement of cells and tissues
 - Gastrulation
 - Neurulation
- Cell differentiation change in cell structure and function
- Growth increase in size

Pattern Formation

Fig. 1.15

Morphogenesis

Fig. 1.16

Growth

Fig. 1.17

Proteins Control Development

Fig. 1.18

Protein Functions

- Cell signaling
 - Cell adhesion proteins
 - · Diffusable signals
 - · Receptors
- Gene expression
 - Transcription factors
 - DNA methylation
- Cell cycle proteins
- · Structural
 - Cytoskeletal components
 - · Extracellular matrix
- · Enzymes

Human betaglobin gene

Protein Synthesis

Control of gene expression can occur at any point during protein synthesis.

Transcriptional Control

Positive feedback – amplifies signal

Negative feedback – control strength of signal

In situ Hybridization

Detects gene expression by visualizing the presence of specific mRNA.

Probes can be radioactive, fluorescent or enzymatic.

Box 1D2

Use of Reporter Genes in Development

LacZ gene

- Codes for betagalactosidase protein
- Stains tissue dark blue

GFP gene

- Codes for green fluorescent protein
- Fluoresces green

Pax6 gene betagalactosidase staining

Myf-5 expression (lacZ) -muscle devlopement

Crystallin Expression (GFP) -lens development

Cell Fate, determination and specification

Vital Dye Staining

Developed by Vogt

Method to stain cells without killing them

Allows you to follow cell movement

Fate mapping amphibian embryos with vital dyes

Modern Fate Mapping

- Radioactive labeling
- Grafting
- Mosaic embryos
- Fluorescent dyes
- Antibody labels
- DNA and RNA probes

Fate mapping with fluorescent dyes

Fate mapping using grafting

Chick embryo with region of quail cells on the neural tube

Other examples of grafting experiments

Induction

- Can be permissive or instructive
- Cell Signals
 - Diffusion
 - Direct contact
 - Gap junction
- Response to signal is dependent on factors in the receiving cell

Morphogens

- Signaling molecules
 - Threshold concentration required for activation.
 - Morphogen gradients can specify different regions of an embryo

Fig. 1.24

Fig. 1.25

61

Box 1E

Fig. 1.26

Lateral Inhibition

Causes evenly distributed patterns

Asymmetric distribution of cytoplasmic determinants

Cytoplasmic Determinants

Asymmetrical distribution of cytoplasmic determinants produces differ cell contexts.

Stem cells

Fig. 1.29

Embryology and Evolution

- Embryonic homologies show common decent.
 - Barnacle and shrimp
 - Tunicates and chordates
 - Starfish and chordates
- Charles Darwin used embryology to support his theories of evolution.

Vertebrate Embryos

Barnacle and Shrimp Larvae

Embryonic Homologies

- General embryonic structures become more specialized later in development.
- Evidence of evolution

