### Fertilization

# Sperm Development



## Sperm Flagella

- Microtubule doublets slide past each other powered by dynein arms
- Dynein arms hydrolyze ATP





#### Acrosome

- Modified secretory vesicle derived from Golgi apparatus
- Sea Urchin
  - Globular actin found between nucleus and acrosome
  - Forms acrosomal process

## Egg

- Filled with materials necessary for developing embryo
  - Proteins
  - Ribosomes and tRNA
  - mRNA
  - Morphogenic factors
  - Protective chemicals

# Egg Stage During Sperm Entry



### Extracellular Components

- Egg jelly (some organism)
- Vitelline envelope
  - Sperm-egg recognition (species specific)
- Mammals
  - Zona pellucida (mammals)
    - Extracellular matrix between membrane and vitelline envelope
  - Cumulus cells and corona radiata
    - Follicle cells that ovulate with egg

# Sea Urchin Egg



# Mammalian Egg



## Intracellular Components

#### Cortex

- Gel-like, stiff cytoplasm
- Contains globular actin (homologous to actin in sperm)
- Cortical granules
  - Golgi derived (like acrosome)
  - Prevents polyspermy
    - Proteolytic enzymes
    - Mucopolysaccharides
    - Hylanin and adhesive glycoproteins

# Sea Urchin Egg



# Fusion of Egg and Sperm



# Summary of Egg Sperm Recognition

- 1)Chemotaxis
- 2)Acrosomal reaction
- 3)Binding
- 4)Passage through egg envelope
- 5)Fusion of membranes

#### Chemotaxis

- Sea Urchin
  - Resact or speract peptides released by egg
  - Sperm have resact or speract receptors
    - Species specific
    - Binding causes increase in cGMP
  - cGMP dependent calcium channel
    - Calcium ions enter sperm from water
    - Activates turning response
    - Activates sperm respiration and mobility

# Sperm Chemotaxis in Sea Urchin



#### Acrosome Reaction in Sea Urchin

- Sea Urchin
  - Sperm cell surface receptors bind to egg jelly polysaccharides
    - Polysaccharides are species specific
    - Prevents cross species fertilization

#### **Activation in Sea Urchin**

- Open calcium transport channel
- Activates sodium ion (in), hydrogen ion (out) pump
- Activates phospholipase (triggers IP<sub>3</sub> second messager)



#### Acrosome Reaction in Sea Urchin



#### Acrosome Reaction in Sea Urchin

- High calcium causes:
  - Fusion of acrosome to cell membrane
    - Contents are dumped out
  - Acrosomal process formation
    - Calcium dependent RhoB causes polymerization of globular actin
    - Acrosome process extends toward egg membrane
    - Bindin proteins exposed

# Acrosome Process is Species Specific Sea Urchin



#### Bindin Localization in Sea Urchin



#### Bindin Receptors (EBR1) on Egg in Sea Urchin

EBR1 limiting factor in sperm binding



# Fusion of Sperm and Egg Membranes (Sea Urchin)

- Egg produces fertilization cone
  - Globular actin polymerizes



## Polyspermy

- When more than one sperm fertilized egg
  - Polyploid nucleus (two sperm enter triploid)
  - More than two centrioles (multiple cleavage planes)
  - Causes mess! Embryo does not develop



#### Fast Block – Sea Urchins

- Change in membrane potential blocks sperm
  - Egg -70 mV
    - Inside negative
    - High Na+ outside egg (sea water)
  - Binding of sperm causes influx of Na+
    - Potential chages to +20 mV
    - Sperm cannot fuse at this membrane potential
  - Short lived
    - Slow block needed (cortical reaction)

#### Fast Block – Sea Urchins





| Na <sup>+</sup> (m <i>M</i> ) | Percentage of<br>polyspermic eggs |
|-------------------------------|-----------------------------------|
| 490                           | 22                                |
| 360                           | 26                                |
| 120                           | 97                                |
| 50                            | 100                               |

#### Slow Block – Sea Urchin

- AKA cortical reaction
- Calcium from endoplasmic reticulum is released
- Cortical granules fuse with plasma membrane
- Cortical granule contents dumped out
  - Serine protease cuts bindin connections
  - Mucopolysaccharides osmotically swells
  - Peroxidase crosslinks extracellular proteins

#### Cortical Granule Exocytosis – Sea Urchin



## Fertilization Envelope – Sea Urchin





### Calcium Release - Sea Urchin



## Sea Urchin Egg Activation

- Before fertilization sea urchin egg is dormant
  - No transription
  - No translation
  - Low metabolic activity
  - Low cellular respiration
- Fertilization removes blocks to these biochemical function

#### **Cortical Granule**



# **Egg Activation Pathway**



### Is is possible to block the cortical reaction?

#### EGTA

- Chelates calcium (binds calcium)
- Injecting EGTA into egg inhibits:
  - Cortical reaction
  - Change in membrane potential
  - Cell division

## Is it possible to induce the cortical reaction without fertilization?

- Calcium ionophore A23187
  - Allows flow of calcium ions across membrane
  - Triggers cortical reaction without fertilization

## Early Response

- Activated by Cortical granule/ Ca<sup>2+</sup> release
  - Activates NAD<sup>+</sup> Kinase
    - Converts NAD+ to NADP+
    - NADP<sup>+</sup> required for phospholipid synthesis

## Late Response

- Activation of DNA and Protein synthesis
  - Caused by increase in pH and Ca<sup>2+</sup>

### pH Increase – Late response

- Na+/H+ exchange
  - Na+ in H+ out
  - Increases pH inside of egg
  - Diacylglycerol pathway
  - Promotes DNA synthesis
  - Artificially increasing pH has same effect

### Ca<sup>2+</sup> Increase – Late Response

- MAP kinase arrests egg cell cycle before Sphase (DNA synthesis)
  - Calcium inactivates MAP kinase
  - MAP kinase inactivation removes DNA synthesis block
  - DNA synthesis can proceed

#### Activation of Translation After Fertilization

- Caused by increase in Ca<sup>2+</sup> and pH
  - Protein synthesis starts with stored mRNA's
  - Actinomycin inhibits transcription



## Why is stored mRNA not translated?

- Translation inhibitors bind mRNA
  - 4E-binding protein in sea urchins
  - Maskin in mice

## What types of mRNA's are stored?

- mRNA's for early cleavage events
  - Histories needed to form chromosomes
  - Tubulins needed to form mitotic spindle
  - Actins needed for cytokinisis
  - Morphogenetic factors needed for embryo patterning

### Cyclin B - mRNA

- Cyclin B required to pass cell cycle checkpoint
  - Blocked by 4E-binding protein
  - Cyclin B binds Cdk1 to form MPF (mitosis promoting factor)
  - Fertilization initiates mitosis

## What does the sperm contribute?

- Haploid genome (half of the total chromosomes)
  - Initially very condensed
- Centrosome
  - Produces mitotic spindle
  - Most animals

## What does the egg contribute?

- Haploid genome (half of the total chromosomes)
- Mitochondria
  - Mitochondrial DNA
- Cytoplasm
- Morphogenetic factors
- mRNA and proteins needed for cleavage
- Yolk food

### **Fusion of Genetic Material**

- Sperm and egg pronuclei must migrate toward each other and fuse.
- Both sets of chromosomes become active.

## Pronuclei Migration

- Sperm chromosome decondense
  - Sperm histones replaced by egg histones
- Centrosome migrates to side of sperm pronucleus facing egg pronuceus
- Centrosome sends out microtubules
  - Integrate with egg microtubules
  - Migrate toward egg pronucleus
  - Pulls the two pronuclei together

#### Sperm pronucleus migrating toward egg pronucleus



## Fusion of pronuclei forms zygote

- Diploid nucleus
- DNA synthesis begins either just before fusion or after fusion

### Mammalian Fertilization

- Internal fertilization
  - Occurs in the ampulla of the oviduct
  - Both sperm and egg must travel to this location
- Early cleavage stages occur in the oviduct before implantation into uterus

### **Uterus**

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.



## How do oocytes migrate to oviduct?

- Oocytes ovulates off surface of ovary
  - Carries cumulus cells in an extracellular matrix
- Taken up by fimbriae at opening of oviduct
  - Ciliary beating draw in oocyte
- Combination of cilia and muscle contraction moves oocyte toward ampulla (site of fertilization)

## How do sperm cells migrate to oviduct?

- Deposited into vagina near cervix
- Pass cervix, through uterus, into isthmus of oviduct then finally into the ampulla of oviduct
- Flagellar motion not sufficient to transport sperm to destination
  - Muscular contraction of uterus
  - Flagella most important inside oviduct

## Sperm capacitation

- Capacitation final maturation of sperm
  - Completed during trip to oviduct
  - Unblocks acrosome reaction

# What are the advantages of capacitation?

- Longer time viable sperm are present.
- Increased chance of sperm meeting egg.

## What changes during capacitation?

- Cholesterol removed
  - Rafting of receptor proteins on anterior end.
- Cell surface proteins and carbohydrates change
  - Unmask receptor proteins
- Eflux of potassium ions
  - Inside of sperm becomes more negative
  - Allows easier influx of Ca<sup>2+</sup>
- Protein phosphorylation
  - Activates receptor proteins
- Plasma membrane and outer acrosomal membrane fuse

# What is the fate of uncapacitated sperm?

- Bind to oviduct membrane in isthmus
- Slows down capacitance
- Increases longevity of sperm

## Thermotaxis of sperm

- <u>Capacitated</u> sperm move toward warmer region of oviduct.
  - Sense temperature gradient.
  - Ampulla 2°C warmer than isthmus.

## Chemotaxis of Sperm

- Oocyte and cumulus cells secrete sperm chemotactic factors.
- <u>Capacitated</u> sperm move toward areas with higher level of chemotactic factors.

### Mammalian Fertilization



### Zona Pellucida

- Made of:
  - Three crosslinked glycoproteins
    - Polymer of ZP2 and ZP3 crosslinked by ZP1
  - Peripheral proteins
- Bind sperm and initiates acrosomal reaction



## Early Stages in Sperm Binding

- 1) Weak interaction with peripheral proteins.
- SED1 protein on side of sperm head binds to zona protein complex.
  - Antibodies against SED1 blocks fertilization.

## Final Stages in Sperm Binding

- 1) Sperm binds to ZP3
- ZP3 is crosslinked to GalT on surface of sperm
- 3) Acrosome reaction is induced

## ZP competition experiments

- Adding soluble ZP3 prevents fertilization
- ZP3 inactivated when carbohydrates are removed

## ZP proteins and fertilization



## Radioactive ZP3 binds to sperm head



### Induction of Acrosomal Reaction

- Crosslinking of sperm surface receptors by ZP3:
  - (1) Activates G proteins
  - (2) Opens calcium channels
  - (3) Exocytosis of acrosomal vesicle

## Acrosome Exocytosis



### **Acrosomal Reaction**

- Proteases released zona proteins digested
- ZP3 shed from sperm during acrosome reaction
  - Inner acrosomal membrane now at surface of cell
  - Binds to ZP2

### Mammalian Fertilization



### Gamete Membrane Fusion

- Possible mechanism
  - CD9 (integrin binding protein) on egg might interact with Izumo protein on sperm
  - CD9 or Izumo knockout mutations block binding

## Prevention of Polyspermy

- No fertilization envelope in mammals
- Cortical granule reaction releases:
  - N-acetylglucosaminidase
    - Breaks connection between GalT on sperm and N-acetylglucasamine residue on ZP3 in zona pellucida
  - Protease
    - Cleave ZP2
  - Sperm not bound to membrane are released

### **Gamete Fusion**

- Actin polymerization in egg forms microvilli that reach up to sperm.
- Binding starts at equatorial domain
- Sperm pronucleus, centrosome and mitochondria taken into egg.
  - Pronucleus fuses with egg pronucleus
  - Centrosome organizes microtubules
  - Sperm mitochondria are destroyed by egg



### **Fusion of Genetic Material**

- Takes about 12 hours
  - Sperm DNA tightly bound by protamines
    - Compacted by disulfide bonds
    - Glutathione in egg breaks disulfide bonds
    - Releases grip on DNA
  - Oocyte arrested at metaphase II
    - Calcium activates kinase
    - Results in destruction of cyclin
    - Cell cycle resumes

## **DNA Synthesis**

- Calcium inactivates MAP kinase
  - Activates DNA synthesis in sperm and egg pronuclei
  - Sperm centrosome form aster and pulls pronuclei together
  - Mitosis starts immediately before zygote nucleus forms

### **Pronuclear Movements**

