Drosophila Life Cycle

Early Drosophila Cleavage

- Nuclei migrate to periphery after 10 nuclear divisions.
- Cellularization occurs when plasma membrane folds in to divide nuclei into cells.

Drosophila Superficial Cleavage

Cytoskeleton Surrounds Nuclei

Microtubules and microfilaments direct the formation of individual cells from the syncytial blastoderm.

Cellularization of Syncytial Blastoderm

Gastrulation and Germ Band Extension

Fate Map During Gastrulation

- Ventral furrow folds in to form the mesoderm.
- Lateral to the mesoderm, the neuroectoderm moves ventral to the mesoderm.
- Ectoderm spreads on surface to form the epidermis.
- Endoderm invaginates at anterior and posterior ends.
- Pole cells internalize.

Larvae

Comparison of Larvae and Adult Segments

Imaginal Discs

Segmentation

Overview of Pattern Formation

Generalized Model of Drosophila Segmentation

Maternal Effect Genes

Egg Development

Maternal Effect Genes

Bicoid Gradient

bicoid Gradient

bicoid mRNA secreted by nurse cells

bicoid mRNA binds to dynein – a microtubule motor protein

bicoid mRNA moves toward the non-growing end of the microtubule

Non-growing end of microtubules becomes anterior end

bicoid mRNA translated into bicoid protein during syncytial blastoderm stage

bicoid protein diffuses toward posterior end

UV-irradiation of anterior end

bicoid mutants

Bicoid gradient effect development of anterior end

Bicoid

protein

Posterior Group Genes

mRNA's that specify the posterior end

oskar - localizes nanos to posterior end

nanos – blocks translation of hunchback

caudal - translation inhibited by bicoid protein

nanos Gradient

How does nanos gradient form?

oskar rides along growing microtubules by binding to kinesin I

Growing end of microtubules becomes posterior end

nanos passively diffuses and gets trapped by oskar at posterior end.

Hunchback Gradient

caudal restricted to posterior end by bicoid

Green bicoid Anterior end

Red *caudal*Posterior end

Terminal Group Genes

Necessary for the specification of the ends of the embryo

Acron – anterior

Telson – posterior

torso-like protein localized to the anterior and posterior tips

torso-like activates torso protein

What determines acron or telson?

If bicoid is present the acron will form.

If bicoid is not present telson will form.

Summary

bicoid gradient promotes hunchback translation inhibits caudal translation at anterior end

bicoid/hunchback gradient forms

High concentrations of *bicoid* and *hunchback* together activate the anterior gap genes.

nanos gradient promotes caudal translation inhibits hunchback translation at posterior end

caudal gradient forms

High concentration of *caudal* activates posterior gap gene transcription

torso-like expressed at ends of embryo activates torso

Acron develops where bicoid and torso are present

Telson develops where torso alone is present

Dorsal-Ventral Polarity

Dorsal localized to ventral cells during oogenesis. Forms Dorsal protein gradient.

Egg Development

Growing egg chambers setup oocyte polarity

Follicle Cell Expression

Localization of Dorsal

Toll Signaling Pathway

Gurken Localized to Dorsal Surface

Localized during oogensis.

Inhibits *Pipe* protein

Pipe protein required for Dorsal function

Pipe active on ventral side (part of complex cascade)

Allows *Dorsal* protein to ventralize the opposite side of the cell.

Develops *Dorsal* gradient

Localization of Gurken

Localization of gurken

Localization of bicoid, oskar and gurken

- Oocyte nucleus travels to anterior dorsal side of oocyte. It synthesizes gurken mRNA which remains between the nucleus and the follicle cells.
- gurken messages are translated. The Gurken protein is received by Torpedo proteins during mid-oogenesis.
- Torpedo signal causes follicle cells to differentiate to a dorsal morphology.
- Synthesis of Pipe protein is inhibited in dorsal follicle cells.
- Gurken protein does not diffuse to ventral side.
- Ventral follicle cells synthesize Pipe proteins.

- 6 In ventral follicle cells, Pipe completes the modification of unknown factor (x).
- Nudel and factor (x) interact to split the Gastrulation-deficient (Gd) protein.
- 8 The activated Gd protein splits the Snake protein, and the activated Snake protein cleaves the Easter protein.
- The activated Easter protein splits Spätzle; activated Spätzle binds to Toll receptor protein.
- Toll activation activates Tube and Pelle, which phosphorylate the Cactus protein. Cactus is degraded, releasing it from Dorsal.
- Dorsal protein enters the nucleus and ventralizes the cell.

Snake Gene Mutation

Snake required for Dorsal localization during oogenesis

How can a protein gradient specify different regions of the embryo?

Dorsal protein is a transcription factor.

Activates or suppresses transcription of genes.

Genes have different sensitivities to *Dorsal* protein

Example of Dorsal Gradient Function

- Twist protein required to specify mesoderm
 - High concentration of *Dorsal* is required to turn on Twist gene
 - Twist is only turned on in cells along ventral midline

Localization of Twist Protein During Gastrulation

Summary

Antero-posterior

mRNAs: bicoid forms anterior to posterior gradient; hunchback uniform; nanos and caudal uniform

Anterior to posterior gradient of Bicoid protein formed. hunchback mRNA translation suppressed in posterior region by Nanos. caudal mRNA translation repressed by Bicoid

Dorso-ventral

Spätzle protein activates Toll receptor on ventral side

Dorsal protein enters ventral nuclei, giving ventral to dorsal gradient

Termini: Torso receptor activated by Trunk at ends of egg

Staufen required for bicoid and oskar mRNA localization

Staufen protein binds to bicoid and oskar mRNA

Polarization of *Drosophila* oocyte

Antero-posterior

Dorso-ventral

oocyte localized at posterior end of follicle by cadherin

oocyte Gurken protein induces posterior follicle cells via Torpedo

posterior signal from follicle cells reorganizes oocyte cytoskeleton

bicoid mRNA localized in anterior, oskar and other mRNAs in posterior

nucleus moves dorsally

oocyte Gurken induces dorsal follicle cells

ventral follicle cells deposit ventral proteins in oocyte viteline envelope

Termini: follicle cells at both ends of the egg deposit ligand for the Torso protein in the vitelline envelope

Segmentation Genes

Classified according to mutant phenotype

Gap – several contiguous segments missing.

Pair-rule – part of every other segment missing.

Segment polarity – defects (deletions, duplications, polarity reversals) in every segment.

(C) Segment polarity: engrailed (as an example)

Gap Genes

Activated or repressed by maternal effect genes.

bicoid controls hunchback expression

Gap gene expression is complex and not completely known.

What do we know?

Kruppel expression is controlled by Hunchback protein

High levels of Hunchback inhibits Kruppel

Medium levels of Hunchback activates Kruppel

Red=Hunchback Green=Kruppel

giant

High levels of hunchback and bicoid induce expression of giant in anterior end but repress expression of giant at posterior end.

Caudal induces giant at posterior end.

kruppel

Kruppel expressed where there are low levels of hunchback and caudal.

knirps

Hunchback inhibits knirps at anterior end and caudal activates knirps at posterior end.

Gap gene pattern

Domains overlap

Nonadjacent domains mutually repress

- Gt/Kr mutual repression
- Hb/Kn mutual repression

Dorsal divides up the dorsal/ventral axis

Dorsal Gradient Function

- Decapentaplegic (dpp) required to specify dorsal ectoderm
 - Dorsal protein suppresses dpp gene
 - dpp only expressed where Dorsal protein is low on dorsal side away from ventral midline

Dorsal controls both dpp and twist

Dorsal Gradient Function

Sog required to specify the neuroectoderm

Transcription of Sog is activated by an intermediate amount of Dorsal protein

Sog can only have an effect when it is not express with *twist*

Sog is expressed in a narrow band above twist expression and below dpp expression

Amniosera determined by interaction of Sog, tolliod, Dorsal and dpp.

Summary

Antero-posterior

Bicoid protein gradient switches hunchback on at high concentration

Hunchback activates and represses gap genes like Krüppel, knirps, giant

gap-gene products and gap genes interact to sharpen expression boundaries

axis is divided into unique domains containing different combinations of transcription factors

Dorso-ventral

ventro-dorsal gradient of intranuclear Dorsal protein forms

ventral activation of twist, snail, and repression of decapentaplegic

Decapentaplegic expressed dorsally

gradient of Decapentaplegic activity patterns dorsal region

dorso-ventral axis divided into prospective mesoderm, neurectoderm, epidermis, amnioserosa

Pair-rule genes

Primary Pair-rule genes

Gene promoters of primary pair-rule genes have different enhancers required for expression in different segments in the embryo.

Each enhancer is subject to activation by a different gap gene.

Example even-skipped gene

Stripe 2 enhancer

- Low bicoid/hunchback activate
- Giant/kruppel repressed
- Acts like an on/off switch for gene

Pair-rule gene expression

Blue=even-skipped Brown=fushi tarazu
Immediately prior to cellularization
Protein localization using antibodies

Gap genes specifiy second even-skipped stripe

Stripe 2 Enhancer of even-skipped

Red=hunchback Green=eve-skipped

Secondary Pair-Rule Genes

Expressed in context of primary pair-rule genes

As in primary pair-rule gene they self enhance expression

Result – each of the eight pair-rule genes is expressed in a seven stripe pattern

However, the stripes are not in the same location

Result – each row of cells expresses a different combination of pair-rule genes

ftz gene expression

Fushi tarazu gene (ftz) secondary pair-rule gene

Expressed in context of primary pair-rule genes

A-D ftz gene expression

Localizes to 7 bands

E ftz and eve gene expression

ftz gene is expressed where eve is not (ftz green, eve blue)

Pair-rule gene summary

production of local combinations of gap-gene transcription factors

activation of each pair-rule gene in seven transverse stripes along the antero-posterior axis

pair-rule gene expression defines 14 parasegments, each pair-rule gene being expressed in alternate parasegments

Segment Polarity (segmentation) Genes

Cell-cell interactions – syncytium no longer present

Convert parasegment (from pair-rule genes) to actual segments

Expression based on pair-rule expression

Expressed in part of every segment

engrailed Expression

Expressed in the anterior end of each parasegment after cellularization. Turned on by pair-rule gene expression.

Ftz (blue), eve (pink), engrailed (dark nuclei)

Hedgehog and Wingless

Each is expressed in a single band in each parasegment

Engrailed activated hedgehog transcriptions and represses wingless transcription

Engrailed is activated in cells high in eve and ftz but low in other pair-rule proteins

Results in a 14 stripe pattern

Wingless Expression

Controlled by Wnt Cascade

Hedgehog/wingless gradients

Stable boundary forms

Overlapping gradients can control other genes Anterior/posterior of each segment established

Compartment Boundary

Strengthening of Pattern

Reciprocal activation

Hedgehog diffuses to neighboring cells and activates wingless

Wingless diffuses to neighboring cells and activates hedgehog

Formation of Segments

Homeotic Selector Genes

Establish segment identity

Activated once segment polarity is determined by segment polarity genes

Turned on by unique combination of gap and pairrule genes

Antennapedia Complex

Contains 5 genes

Labial (lab) - head

Deformed (dfd) – head

Antennapedia (Antp) – thorax

Sex combs reduced (scr) – thorax

Proboscipedia (pb) – adult head

Bithorax Complex

Contains three genes

Ultrabithorax (Ubx) - third thoracic segment

Abdominal A (abdA) – abdomen

Abdominal B (abdB) – abdomen

Ultrabithorax Mutant

Antennapedia Mutation

Gap and pair-rule genes specify homeotic genes

Antp

Activated by hunchback

Expression is limited to T2 (mid-thoracic segment)

abdA/AbdB

Repressed by hunchback and kruppel

Expression is limited to abdomen

Bithorax Characterized Parasegments

