Anatomy of Blood Vessels

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- arteries carry blood away from heart
- veins carry blood back to heart
- capillaries connect smallest arteries to veins, exchange material with surrounding tissues

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Vessel Wall

tunica interna

- lines the blood vessel and is exposed to blood
- endothelium simple squamous epithelium overlying a basement membrane and a sparse layer of loose connective tissue
 - acts as a selectively permeable barrier
 - secrete chemicals that stimulate dilation or constriction of the vessel
 - normally repels blood cells and platelets that may adhere to it and form a clot
 - when tissue around vessel is inflamed, the endothelial cells produce cell-adhesion molecules that induce leukocytes to adhere to the surface
 - causes leukocytes to congregate in tissues where their defensive actions are needed

Vessel Wall

tunica media

- middle layer
- consists of smooth muscle, collagen, and elastic tissue
- strengthens vessel and prevents blood pressure from rupturing them
- changes in diameter of the blood vessel brought about by smooth muscle

Vessel Wall

tunica externa

- outermost layer
- consists of loose connective tissue that often merges with that of neighboring blood vessels, nerves, or other organs
- anchors the vessel and provides passage for small nerves, lymphatic vessels

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Arteries

conducting arteries

- biggest arteries
- aorta, common carotid, subclavian, pulmonary trunk, and common iliac arteries
- expand during systole, recoil during diastole which lessens fluctuations in blood pressure
- contain additional layers of elastic tissue

distributing arteries

- distributes blood to specific organs
- brachial, femoral, renal, and splenic arteries
- smooth muscle layers constitute three-fourths of wall thickness

Aneurysm

- aneurysm weak point in an artery or the heart wall
 - forms a thin-walled, bulging sac that pulsates with each heartbeat and may rupture at any time
 - most common sites: abdominal aorta, renal arteries,
 and arterial circle at the base of the brain
 - can cause pain by putting pressure on other structures
 - can rupture causing hemorrhage
 - result from congenital weakness of the blood vessels or result of trauma or bacterial infections such as syphilis
 - most common cause is atherosclerosis and hypertension

Arteries and Metarterioles

resistance (small) arteries

- arterioles smallest arteries
 - control amount of blood to various organs

metarterioles

- short vessels that link arterioles to capillaries
- muscle cells form a precapillary sphincter about entrance to capillary
 - constriction of these sphincters reduces or shuts off blood flow through their respective capillaries
 - diverts blood to other tissues

Capillaries

- capillaries site where nutrients, wastes, and hormones pass between the blood and tissue fluid through the walls of the vessels (exchange vessels)
 - composed of endothelium and basal lamina

Three Types of Capillaries

- continuous capillaries occur in most tissues
 - endothelial cells have tight junctions forming a continuous tube with intercellular clefts
 - allow passage of solutes such as glucose
 - pericytes wrap around the capillaries and contain the same contractile protein as muscle
 - contract and regulate blood flow
- fenestrated capillaries kidneys, small intestine
 - organs that require rapid absorption or filtration
 - endothelial cells riddled with holes called filtration pores (fenestrations)
 - allows passage of only small molecules
- sinusoids (discontinuous capillaries) liver, bone marrow, spleen
 - irregular blood-filled spaces with large fenestrations
 - allow proteins (albumin), clotting factors, and new blood cells to enter the circulation

Continuous Capillary

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Fenestrated Capillary

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

b: Courtesy of S. McNutt

Figure 20.6a

Figure 20.6b

Sinusoid in Liver

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 20.7

Capillary Beds

- capillaries organized into networks called capillary beds
 - usually supplied by a single metarteriole
- precapillary sphincters control which beds are well perfused
 - when sphincters open
 - capillaries are well perfused with blood and engage in exchanges with the tissue fluid
 - when sphincters closed
 - blood bypasses the capillaries
 - flows through thoroughfare channel to venule

Capillary Bed Sphincters Open

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 20.3a

when sphincters are open, the capillaries are well perfused three-fourths of the capillaries of the body are shut down

Capillary Bed Sphincters Closed

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Figure 20.3b

(b) Sphincters closed

when the sphincters are closed, little to no blood flow occurs (skeletal muscles at rest)

20-17

Veins (Capacitance Vessels)

- greater capacity for blood containment than arteries
- thinner walls, flaccid, less muscular and elastic tissue
- collapse when empty, expand easily
- have steady blood flow
- merge to form larger veins
- subjected to relatively low blood pressure
 - remains 10 mm Hg with little fluctuation

Distribution of Blood

Blood Flow Pathway

- postcapillary venules smallest veins
 - even more porous than capillaries so also exchange fluid with surrounding tissues
- muscular venules up to 1 mm in diameter
- medium veins up to 10 mm in diameter
 - tunica interna forms venous valves
 - skeletal muscle pump propels venous blood back toward the heart

Blood Flow Pathway

venous sinuses

- veins with especially thin walls, large lumens, and no smooth muscle
- Example: coronary sinus of the heart
- not capable of vasomotion
- large veins larger than 10 mm
 - venae cavae, pulmonary veins, internal jugular veins, and renal veins

Varicose Veins

- blood pools in the lower legs in people who stand for long periods stretching the veins
 - cusps of the valves pull apart in enlarged superficial veins further weakening vessels
 - blood backflows and further distends the vessels, their walls grow weak and develop into varicose veins
- hereditary weakness, obesity, and pregnancy also promote problems
- hemorrhoids are varicose veins of the anal canal

Circulatory Routes

- simplest and most common route Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
 - heart * arteries * arterioles * capillaries * venules * veins
 - passes through only one network of capillaries from the time it leaves the heart until the time it returns

portal system

- blood flows through two consecutive capillary networks before returning to heart
 - between hypothalamus and anterior pituitary
 - in kidneys
 - between intestines to liver

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Anastomoses

- anastomosis the point where two blood vessels merge
- arteriovenous anastomosis (shunt)
 - artery flows directly into vein bypassing capillaries

venous anastomosis

- most common
- one vein empties directly into another
- reason vein blockage less serious than an arterial blockage

arterial anastomosis

- two arteries merge
- provides collateral (alternative) routes of blood supply to a tissue
- coronary circulation and around joints

Blood Pressure

- blood pressure (bp) the force that blood exerts against a vessel wall
- measured at brachial artery of arm using sphygmomanometer
- two pressures are recorded:
 - systolic pressure: peak arterial BP taken during ventricular contraction (ventricular systole)
 - diastolic pressure: minimum arterial BP taken during ventricular relaxation (diastole) between heart beats
- normal value, young adult: 120/75 mm Hg

Abnormalities of Blood Pressure

- hypertension high blood pressure
 - chronic is resting BP > 140/90
 - consequences
 - can weaken small arteries and cause aneurysms
- hypotension chronic low resting BP
 - caused by blood loss, dehydration, anemia

Blood Pressure

- one of the body's chief mechanisms in preventing excessive blood pressure is the ability of the arteries to stretch and recoil during the cardiac cycle
- importance of arterial elasticity
 - expansion and recoil maintains steady flow of blood throughout cardiac cycle, smoothes out pressure fluctuations and decreases stress on small arteries
- BP rises with age
 - arteries less distensible and absorb less systolic force
- BP determined by cardiac output, blood volume and peripheral resistance

Increasing distance from left ventricle

Flow at Different Points

- from aorta to capillaries, blood velocity (speed) decreases for three reasons:
 - greater distance, more friction to reduce speed
 - smaller radii of arterioles and capillaries offers more resistance
 - farther from heart, the number of vessels and their total cross-sectional area becomes greater and greater
- from capillaries to vena cava, flow increases again
 - decreased resistance going from capillaries to veins
 - large amount of blood forced into smaller channels
 - never regains velocity of large arteries

Control by Arterioles

- arterioles are most significant point of control over peripheral resistance and flow
 - on proximal side of capillary beds and best positioned to regulate flow into the capillaries
 - outnumber any other type of artery, providing the most numerous control points
 - more muscular in proportion to their diameter
 - highly capable of vasomotion
- arterioles produce half of the total peripheral resistance

20-31

Regulation of BP and Flow

- vasomotion is a quick and powerful way of altering blood pressure and flow
- three ways of controlling vasomotion:
 - local control
 - neural control
 - hormonal control

Local Control of BP and Flow

- autoregulation the ability of tissues to regulate their own blood supply
- vasoactive chemicals substances secreted by platelets, endothelial cells, and perivascular tissue stimulate vasomotion
- angiogenesis growth of new blood vessels
 - occurs in regrowth of uterine lining, around coronary artery obstructions, in exercised muscle, and malignant tumors
 - controlled by growth factors

Neural Control of Blood Vessels

- vessels under remote control by the central and autonomic nervous systems
- vasomotor center of medulla oblongata exerts sympathetic control over blood vessels throughout the body
 - stimulates most vessels to constrict, but dilates vessels in skeletal and cardiac muscle to meet demands of exercise
 - precapillary sphincters respond only to local and hormonal control due to lack of innervation
 - vasomotor center is the integrating center for three autonomic reflexes
 - Baroreflexes carotid sinuses
 - Chemoreflexes aoritic and catotid bodies
 - medullary ischemic reflex medulla oblongata

Negative Feedback Control of BP

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 20.13

Two Purposes of Vasomotion

- general method of raising or lowering BP throughout the whole body
 - increasing BP requires medullary vasomotor center or widespread circulation of a hormone

- method of rerouting blood from one region to another for perfusion of individual organs
 - either centrally or locally controlled
 - during exercise, sympathetic system reduces blood flow to kidneys and digestive tract and increases blood flow to skeletal muscles
 - metabolite accumulation in a tissue affects local circulation without affecting circulation elsewhere in the body

Routing of Blood Flow

- localized vasoconstriction
 - if a specific artery constricts, the pressure downstream drops, pressure upstream rises
 - enables routing blood to different organs as needed

examples

- vigorous exercise dilates arteries in lungs, heart and muscles
 - vasoconstriction occurs in kidneys and digestive tract
- dozing in armchair after big meal
 - vasoconstriction in lower limbs raises BP above the limbs redirecting blood to intestinal arteries

Blood Flow in Response to Needs

arterioles shift blood flow with changing priorities

Blood Flow Comparison

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 20.15

during exercise

- increased perfusion of lungs, myocardium, and skeletal muscles
- decreased perfusion of kidneys and digestive tract

Capillary Exchange

- capillary exchange two way movement of fluid across capillary walls
 - water, oxygen, glucose, amino acids, lipids, minerals, antibodies, hormones, wastes, carbon dioxide, ammonia
- chemicals pass through the capillary wall by three routes
 - through endothelial cell cytoplasm
 - intercellular clefts between endothelial cells
 - filtration pores (fenestrations) of the fenestrated capillaries
- mechanisms involved
 - diffusion, transcytosis, filtration, and reabsorption

Capillary Exchange - Diffusion

- diffusion is the most important form of capillary exchange
 - glucose and oxygen being more concentrated in blood diffuse out of the blood
 - carbon dioxide and other waste being more concentrated in tissue fluid diffuse into the blood
- capillary diffusion can only occur if:
 - the solute can permeate the plasma membranes of the endothelial cell, or
 - find passages large enough to pass through
 - filtration pores and intracellular clefts

lipid soluble substances

- steroid hormones, O₂ and CO₂ diffuse easily through plasma membranes
- water soluble substances
 - glucose and electrolytes must pass through filtration pores and intercellular clefts
- large particles proteins, held back

Capillary Exchange - Transcytosis

- endothelial cells pick up material on one side of the plasma membrane by pinocytosis or receptor-mediated endocytosis, transport vesicles across cell, and discharge material on other side by exocytosis
- important for fatty acids, albumin and some hormones (insulin)

Filtration and Reabsorption

- fluid filters out of the arterial end of the capillary and osmotically reenters at the venous end
 - delivers materials to the cell and removes metabolic wastes
- opposing forces
 - blood hydrostatic pressure drives fluid out of capillary
 - high on arterial end of capillary, low on venous end
 - colloid osmotic pressure (COP) draws fluid into capillary
 - · results from plasma proteins (albumin)- more in blood
 - oncotic pressure = net COP (blood COP tissue COP)
- hydrostatic pressure
 - physical force exerted against a surface by a liquid
 - blood pressure is an example
- capillaries reabsorb about 85% of the fluid they filter
- other 15% is absorbed by the lymphatic system and returned to the blood

Variations in Capillary Activity

- capillaries usually reabsorb most of the fluid they filter – exception:
 - kidney capillaries in glomeruli do not reabsorb
 - alveolar capillaries in lung absorb completely to keep fluid out of air spaces
- capillary activity varies from moment to moment
 - collapsed in resting tissue, reabsorption predominates since BP is low
 - metabolically active tissue has increase in capillary flow and BP
 - increase in muscular bulk by 25% due to accumulation of fluid

Edema

- edema the accumulation of excess fluid in a tissue
 - occurs when fluid filters into a tissue faster than it is absorbed
- three primary causes
 - increased capillary filtration
 - kidney failure, histamine release, old age, poor venous return
 - reduced capillary absorption
 - hypoproteinemia, liver disease, dietary protein deficiency
 - obstructed lymphatic drainage
 - surgical removal of lymph nodes

Consequences of Edema

- tissue necrosis
 - oxygen delivery and waste removal impaired
- pulmonary edema
 - suffocation threat
- cerebral edema
 - headaches, nausea, seizures, and coma
- severe edema or circulatory shock
 - excess fluid in tissue spaces causes low blood volume and low blood pressure

Mechanisms of Venous Return

- venous return the flow of blood back to the heart
 - pressure gradient
 - blood pressure is the most important force in venous return
 - 7-13 mm Hg venous pressure towards heart
 - venules (12-18 mm Hg) to **central venous pressure** point where the venae cavae enter the heart (~5 mm Hg)
 - gravity drains blood from head and neck
 - skeletal muscle pump in the limbs
 - contracting muscle squeezed out of the compressed part of the vein
 - thoracic (respiratory) pump
 - inhalation thoracic cavity expands and thoracic pressure decreases, abdominal pressure increases forcing blood upward
 - central venous pressure fluctuates
 - 2mm Hg- inhalation, 6mm Hg-exhalation
 - blood flows faster with inhalation
 - cardiac suction of expanding atrial space

Skeletal Muscle Pump

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(a) Contracted skeletal muscles

(b) Relaxed skeletal muscles

Venous Return and Physical Activity

- exercise increases venous return in many ways:
 - heart beats faster, harder increasing CO and BP
 - vessels of skeletal muscles, lungs, and heart dilate and increase flow
 - increased respiratory rate, increased action of thoracic pump
 - increased skeletal muscle pump
- venous pooling occurs with inactivity
 - venous pressure not enough force blood upward
 - with prolonged standing, CO may be low enough to cause dizziness
 - prevented by tensing leg muscles, activate skeletal muscle pump

Special Circulatory Routes- Brain

- total blood flow to the brain fluctuates less than that of any other organ (700 mL/min)
 - seconds of deprivation causes loss of consciousness
 - 4-5 minutes causes irreversible brain damage
 - blood flow can be shifted from one active brain region to another

TIAs and CVAs

- transient ischemic attacks (TIAs) brief episodes of cerebral ischemia
 - caused by spasms of diseased cerebral arteries
 - dizziness, loss of vision, weakness, paralysis, headache or aphasia
 - lasts from a moment to a few hours
 - often early warning of impending stroke
- stroke cerebral vascular accident (CVA)
 - sudden death of brain tissue caused by ischemia
 - atherosclerosis, thrombosis, ruptured aneurysm
 - effects range from unnoticeable to fatal
 - blindness, paralysis, loss of sensation, loss of speech common
 - recovery depends on surrounding neurons, collateral circulation

Special Circulatory RoutesSkeletal Muscle

highly variable flow depending on state of exertion

at rest:

- arterioles constrict
- most capillary beds shut down
- total flow about 1L/min

during exercise:

- arterioles dilate in response to epinephrine and sympathetic nerves
- precapillary sphincters dilate due to muscle metabolites like lactic acid, CO₂
- blood flow can increase 20 fold
- muscular contraction impedes flow
 - isometric contraction causes fatigue faster than intermittent isotonic contractions

Arterial Pressure Points

Figure 20.40 a-c

 some major arteries close to surface which allows for palpation for pulse and serve as pressure points to reduce arterial bleeding

Hypertension

- hypertension most common cardiovascular disease affecting about 30% of Americans over 50
- "the silent killer"
 - major cause of heart failure, stroke, and kidney failure
 - damages heart by increasing afterload
 - myocardium enlarges until overstretched and inefficient
 - renal arterioles thicken in response to stress
 - drop in renal BP leads to salt retention (aldosterone) and worsens the overall hypertension
- primary hypertension
 - obesity, sedentary behavior, diet, nicotine
- secondary hypertension secondary to other disease
 - kidney disease, hyperthyroidism

Blood Pressure Drugs

- Beta blocker
 - Inhibit beta adrenergic receptors
 - Block effects of epinephrine
 - Resting heart reduces output lowering blood pressure
- Calcium channel blocker
 - Reduce intracellular calcium in heart muscle and smooth muscle in blood vessels
 - Reduced cardiac output and dilation of blood vessels