Hormones

Homeostasis

Dynamic Equilibrium

Negative Feedback

Antagonistic Hormones

Negative Feedback Loop

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Perturbing factor Body Response Temp-Effector Negative Body erature Sun feedback temperature drops Regulation **Blood vessels Glands release** Stimulus dilate sweat To decrease Body body temperature temperature rises Sen-Integrating center To increase body temperature Stimulus Effector Body Negative feedback temperature drops Blood vessels Skeletal muscles Perturbing constrict contract, shiver Response factor Snow and-Body temperature rises ice

Chemical Signals in Animals

- Endocrine system
 - Composed of hormone secreting cells and/or glands
- Related to and interconnected to the nervous system
 - Nervous system high speed short lived effects
 - Endocrine system slow longer lasting effects

Protein Activation and Inhibition

- Direct protein modification
 - Example peptide hormones
 - Hormone binds to receptor protein on cell surface
 - Activates signal transduction cascade
- Transcriptional control
 - Example steroid hormones
 - Hormone enters the cell and binds to transcription factor
 - Transcription factor/hormone combination binds to DNA affecting transcription of specific genes.

Same Signal – Different Effect

- Signals used in different context have different effects on target cells
- Effect depends on proteins receiving the signal

©1999 Addison Wesley Longman, Inc.

Hormones

- Four main types
 - Peptide hormones
 - Steroid hormones
 - Thyroid hormones
 - Catecholamine hormones

Peptide Hormones

- Example insulin and glucagon
 - Produced by Langerhans cells in pancreas
 - Small protein
- Antagonistic pair
 - Insulin (beta cells) lowers glucose level
 - Glucagon (alpha cells) raises glucose level

Glucose Homeostasis

- ↑ Glucose insulin released
 - Most cells have insulin receptors
 - Cells take up glucose from blood
 - Slows glycogen breakdown in liver
 - Stops sugar production from amino acids and fatty acids
- 90mg/100ml
- ↓ Glucose glucagon releases
 - Liver cells have glucagon receptors
 - Glycogen converted to glucose
 - Fats and amino acids converted to sugar

Glucose Homeostasis

Steroid Hormones

- Example corticosteroids
 - Produced by the adrenal cortex
 - Small lipophilic molecule
 - Can pass through the plasma membrane
 - Control at the transcriptional level

Catecholamine Hormones

- Example epinephrine and norepinephrine
 - Synthesized in the adrenal medulla
 - Derived from the amino acid tyrosine

Stress Response

- Short term response
 - Increase glucose (break down glycogen)
 - Increase heart and breathing rate
 - Increase blood pressure
 - Increase metabolic rate
 - Divert blood flow to brain and skeletal muscles
- Long term response
 - Increase blood volume and pressure
 - Breakdown of protein and fat into sugar

Stress Response Hormones

- Adrenal medulla (short terms stress response)
 - Directly stimulated by nerve cells from hypothalamus
 - Produces epinephrine and norepinephrine
 - Catecholamine hormones
- Adrenal cortex (long term stress response)
 - Hypothalamus → releasing factor → pituitary
 - Pituitary → ACTH→ adrenal cortex
 - Produces corticosteroids

Thyroid Hormones

- Control metabolism and development
- Two hormones derived from tyrosine
 - Triiodothyronine (T3)
 - Thyroxine (T4)
- Controlled by negative feedback loops
 - Hypothalamus
 - TRH (TSH-releasing hormone)
 - Anterior pituitary
 - TSH (thyroid stimulating hormone)

Thyroid Negative Feedback

