Chapter 17

Endocrine System Components

- endocrine system
- endocrinology
- endocrine glands
- hormones

Comparison of Endocrine and Exocrine Glands

exocrine glands

- have ducts 'external secretions'
- extracellular effects (food digestion)

endocrine glands

- no ducts
- fenestrated capillary networks
- 'internal secretions'
- intracellular effects
- liver acts like both

Comparison of Nervous and Endocrine Systems (Differences)

internal communication

- nervous both electrical and chemical
- endocrine only chemical

speed and persistence of response

- nervous quick, short lived response
- endocrine slow, long term response

adaptation to long-term stimuli

- nervous response declines (adapts quickly)
- endocrine response persists (adapts slowly)

area of effect

- nervous targeted and specific
- endocrine general, widespread effects

Communication by the Nervous and Endocrine Systems

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(a) Nervous system

(b) Endocrine system

Nervous and Endocrine Systems (Similarities)

- chemicals that are both hormones and neurotransmitters
 - norepinephrine, cholecystokinin, thyrotropin-releasing hormone, dopamine and antidiuretic hormone
- neuroendocrine cells secrete hormones into the bloodstream
 - oxytocin and catecholamines
- overlapping effects on same target cells
 - norepinephrine and glucagon cause glycogen hydrolysis in liver
- systems regulate each other
- target organs or cells

Hypothalamus & Pituitary Gland

Hypothalamus & Pituitary Gland

infundibulum

Pituitary Gland (Hypophysis)

- adenohypophysis (anterior pituitary)
 - arises from hypophyseal pouch (outgrowth of pharynx)
- neurohypophysis (posterior pituitary)
 - downgrowth from brain

Embryonic Development Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(c) 16 weeks

(b) 8 weeks

17-11

Adenohypophysis & Neurohypophysis

- adenohypophysis anterior three-quarters of pituitary
 - anterior lobe (pars distalis)
 - pars tuberalis small mass of cells adhering to stalk
 - linked to hypothalamus by hypophyseal portal system
- neurohypophysis posterior one-quarter of the pituitary
 - median eminence, infundibulum, and the posterior lobe (pars nervosa)
 - nerve tissue, not a true gland

Posterior Pituitary Hormones

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Hypophyseal Portal System

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Histology of Pituitary Gland

(b) Posterior pituitary

Anterior Pituitary Hormones

- Gonadotropin hormones that target gonads
 - FSH (follicle stimulating hormone)
 - stimulates secretion of ovarian sex hormones, development of ovarian follicles, and sperm production
 - LH (luteinizing hormone)
 - stimulates ovulation, stimulates corpus luteum to secrete progesterone, stimulates testes to secrete testosterone
- TSH (thyroid stimulating hormone)
 - stimulates secretion of thyroid hormone
- ACTH (adrenocorticotropic hormone)
 - stimulates adrenal cortex to secrete glucocorticoids
- PRL (prolactin)
 - after birth stimulates mammary glands to synthesize milk, enhances secretion of testosterone by testes
- GH (growth hormone)
 - stimulates mitosis and cellular differentiation

Posterior Pituitary Hormones

- produced in hypothalamus
 - transported by hypothalamo-hypophyseal tract to posterior lobe
 - releases hormones when hypothalamic neurons are stimulated
- ADH (antidiuretic hormone)
 - increases water retention thus reducing urine volume and prevents dehydration
 - also called vasopressin because it can cause vasoconstriction
- OT (oxytocin)
 - surge of hormone released during sexual arousal and orgasm
 - · stimulate uterine contractions and propulsion of semen
 - promotes feelings of sexual satisfaction and emotional bonding between partners
 - stimulates labor contractions during childbirth
 - stimulates flow of milk during lactation
 - promotes emotional bonding between lactating mother and infant

Control of Pituitary Secretion

- rates of secretion are not constant
 - regulated by hypothalamus, other brain centers, and feedback from target organs

Hypothalamic and Cerebral Control

- anterior lobe control releasing hormones and inhibiting hormones from hypothalamus
 - in cold weather, pituitary stimulated by hypothalamus to release TSH, leads to generation of body heat
- posterior lobe control neuroendocrine reflexes
 - neuroendocrine reflex hormone release in response to nervous system signals
 - suckling infant* stimulates nerve endings * hypothalamus * posterior lobe
 a oxytocin * milk ejection
 - hormone release in response to higher brain centers
 - milk ejection reflex can be triggered by a baby's cry
 - emotional stress can affect secretion of gonadotropins, disrupting ovulation, menstruation, and fertility

Control of Pituitary: Feedback from Target Organs

 negative feedback -increased target organ hormone levels inhibits release of hormones

• **positive feedback** stretching of uterus increases OT release, causes contractions, causing more stretching of uterus, etc. until delivery

Growth Hormone

- GH has widespread effects on the body tissues
 - especially cartilage, bone, muscle, and fat
- induces liver to produce growth stimulants
 - insulin-like growth factors (IGF-I) or somatomedins (IGF-II)
 - stimulate target cells in diverse tissues
 - IGF-I prolongs the action of GH
 - **hormone half-life** the time required for 50% of the hormone to be cleared from the blood
 - **GH** half-life 6 20 minutes **IGF-I** half-life about 20 hours
 - protein synthesis increases -- boosts transcription of DNA, production of mRNA, amino acid uptake into cells, suppresses protein catabolism
 - lipid metabolism increased fat catabolized by adipocytes (protein-sparing effect) – provides energy for growing tissues

Growth Hormone

- carbohydrate metabolism by mobilizing fatty acids for energy, GH produces glucose-sparing makes glucose available for glycogen synthesis and storage
- **electrolyte balance** promotes Na⁺, K⁺, & Cl⁻ retention by kidneys, enhances Ca⁺² absorption in intestine
- bone growth, thickening, and remodeling influenced, especially during childhood and adolescence
- secretion high during first two hours of sleep
- can peak in response to vigorous exercise
- GH levels decline gradually with age
- average 6 ng/ml during adolescence, 1.5 ng/mg in old age
 - lack of protein synthesis contributes to aging of tissues and wrinkling of the skin
 - age 30, average adult body is 10% bone, 30% muscle, 20% fat
 - age 75, average adult body is 8% bone, 15% muscle, 40% fat

Pineal Gland

- after age 7, it undergoes involution (shrinkage)
 - down 75% by end of puberty
 - tiny mass of shrunken tissue in adults
- circadian rhythms of daylight and darkness
 - synthesizes melatonin from serotonin during the night
 - fluctuates seasonally with changes in day length
- may regulate timing of puberty in humans
- seasonal affective disorder (SAD) occurs in winter or northern climates
 - symptoms depression, sleepiness, irritability and carbohydrate craving
 - Treatment 2 to 3 hours of exposure to bright light each day

Pineal Gland

Thymus

- thymus plays a role in three systems: endocrine, lymphatic, and immune
- bilobed gland in the mediastinum superior to the heart
 - goes through involution after puberty
- site of maturation of T cells important in immune defense
- secretes hormones (thymopoietin, thymosin, and thymulin) that stimulate development of other lymphatic organs and activity of T-lymphocytes

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Thyroid Gland Anatomy

- thyroid follicles sacs that compose most of thyroid
 - contain protein rich colloid
 - follicular cells simple cuboidal epithelium that lines follicles
- secretes thyroxine (T₄) and triiodothyronine (T₃)
 - increases metabolic rate, O₂ consumption, heat production (calorigenic effect), appetite, growth hormone secretion, alertness and quicker reflexes
- parafollicular (C or clear) cells secrete calcitonin with rising blood calcium
 - stimulates osteoblast activity and bone formation

Histology of the Thyroid Gland

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

thyroid follicles are filled with colloid and lined with simple cuboidal epithelial cells (follicular cells).

Thyroid Histology

Parathyroid Glands

- secrete parathyroid hormone (PTH)
 - increases blood Ca²⁺ levels
 - promotes synthesis of calcitriol
 - increases absorption of Ca²⁺
 - decreases urinary excretion
 - increases bone resorption

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(b) b: © John Cunningham/Visuals Unlimited

Adrenal Gland

Adrenal (Suprarenal) Glands

Adrenal Medulla

- endocrine gland and sympathetic ganglion of sympathetic nervous system
 - modified sympathetic postganglionic neurons called chromaffin cells
 - release catecholamines (epinephrine and norepinephrine) and a trace of dopamine directly into the bloodstream
- effect is longer lasting than neurotransmitters
 - increases alertness and prepares body for physical activity
 - mobilize high energy fuels, lactate, fatty acids, and glucose
 - glycogenolysis and gluconeogenesis boost glucose levels
 - glucose-sparing effect because inhibits insulin secretion
 - muscles use fatty acids saving glucose for brain
 - increases blood pressure, heart rate, blood flow to muscles, pulmonary air flow and metabolic rate
 - decreases digestion and urine production

Adrenal Cortex

- secretes 5 major steroid hormones from three layers of glandular tissue
 - zona glomerulosa (thin, outer layer)
 - secretes mineralocorticoid regulate the body's electrolyte balance
 - zona fasciculata (thick, middle layer)
 - secretes glucocorticoids
 - zona reticularis (narrow, inner layer)
 - secretes sex steroids

Adrenal Histology

Categories of Corticosteroids

- mineralocorticoids zona glomerulosa
 - regulate electrolyte balance
 - aldosterone
- glucocorticoids zona fasciculata
 - regulate metabolism of glucose and other fuels
 - Cortisol
 - helps body adapt to stress and repair tissues
 - anti-inflammatory effect becomes immune suppression with long-term use
- sex steroids zona reticularis
 - androgens
 - estradiol

Adrenal Gland Interactions

- medulla and cortex of adrenal gland are not functionally independent
- medulla atrophies without the stimulation of cortisol
- some chromaffin cells of medullary origin extend into the cortex
 - they stimulate the cortex to secrete corticosteroids when stress activates the sympathetic nervous system

Pancreas Histology

pancreas acini

exocrine digestive gland and endocrine cell clusters (pancreatic islets).

Pancreatic Hormones

- somatostatin secreted by D or delta (_) cells
 - partially suppresses secretion of glucagon and insulin
 - inhibits nutrient digestion and absorption which prolongs absorption of nutrients
- pancreatic polypeptide secreted by PP cells or F cells)
 - inhibits gallbladder contraction and secretion pancreatic digestive enzymes
- gastrin secreted by G cells
 - stimulates stomach acid secretion, motility and emptying

Hormones Affecting Glucose Metabolism

- hyperglycemic hormones raise blood glucose concentration
 - glucagon, growth hormone, epinephrine, norepinephrine, cortisol, and corticosterone
- hypoglycemic hormones lower blood glucose
 - insulin

The Gonads

- ovaries and testes are both endocrine and exocrine
 - exocrine product whole cells eggs and sperm (cytogenic glands)
 - endocrine product gonadal hormones mostly steroids
- ovarian hormones
 - estradiol, progesterone, and inhibin
- testicular hormones
 - testosterone, weaker androgens, estrogen and inhibin

Histology of Ovary and Testis

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

follicle - egg surrounded by granulosa cells and a capsule (theca)

Endocrine Functions of Other Organs

skin

keratinocytes convert a cholesterol-like steroid into cholecalciferol using UV from sun

liver

- converts cholecalciferol into calcidiol
- secretes angiotensinogen (a prohormone)
 - precursor of angiotensin II (a regulator of blood pressure)
- secretes 15% of erythropoietin (stimulates bone marrow)
- hepcidin promotes intestinal absorption of iron
- source of IGF-I that controls action of growth hormone

kidneys

- converts calcidiol to calcitriol, the active form of vitamin D
 - increases Ca²⁺ absorption by intestine and inhibits loss in the urine
- secrete renin that converts angiotensinogen to angiotensin I
 - angiotensin II created by converting enzyme in lungs
 - constricts blood vessels and raises blood pressure
- produces 85% of erythropoietin
 - stimulates bone marrow to produce RBCs

Endocrine Functions of Other Organs

heart

- cardiac muscle secretes atrial natriuretic peptide (ANP) in response to an increase in blood pressure
- decreases blood volume and blood pressure by increasing Na⁺ and H₂O output by kidneys
- opposes action of angiotensin II
- stomach and small intestine secrete at least ten hormones
 - coordinate digestive motility and glandular secretion
 - cholecystokinin, gastrin, Ghrelin, and peptide YY
- ...and many others.

Hormone Chemistry

three chemical classes

steroids

- derived from cholesterol
- secreted by gonads and adrenal glands
- estrogens, progesterone, testosterone, cortisol, corticosterone, aldosterone, DHEA, and calcitriol

peptides and glycoproteins

- created from chains of amino acids
- secreted by pituitary and hypothalamus
- oxytocin, antidiuretic hormone, releasing and inhibiting hormones, and anterior pituitary hormones

monoamines (biogenic amines)

- · derived from amino acids
- secreted by adrenal, pineal, and thyroid glands
- epinephrine, norepinephrine, melatonin, and thyroid hormone
- all hormones are made from either cholesterol or amino acids with carbohydrate added to make glycoproteins.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Hormone Synthesis: Steroid Hormones

 synthesized from cholesterol – differs in functional groups attached to 4-ringed steroid backbone

Peptides

- synthesized in same way as any protein
- at first is an inactive preprohormone
- first several amino acids is a signal peptide that guides it into cisterna of rough endoplasmic reticulum
- signal peptide removed to form prohormone
- Golgi does final transformation to hormone packaged for secretion

Hormone Synthesis: Insulin

begins as
 preproinsulin, then
 becomes proinsulin

 when connecting peptide is removed, two polypeptide chains are formed that make up insulin

Monoamines

- melatonin is synthesized from amino acid tryptophan, and other monoamines from amino acid tyrosine
 - -thyroid hormone is composed of 2 tyrosines

Thyroid Hormone Synthesis

- 1 lodide absorption and oxidation
- 2 Thyroglobulin synthesis and secretion
- 3 lodine added to tyrosines of thyroglobulin
- 4 Thyroglobulin uptake and hydrolysis
- (5) Release of T₄ and a small amount of T₃ into the blood

Figure 17.18

T₃ and T₄ Synthesis

follicular cells

- absorb iodide (I⁻) ions from blood and store in lumen as a reactive form of iodine
- synthesize thyroglobulin and store in lumen
 - forms colloid
 - contains lots of tyrosine
- tyrosine and iodine combine to form thyroxine (T₄)
 bound to thyroglobulin
- stored in follicle

TSH

- stimulates follicular cells to remove T₄ from thyroglobulin for release into plasma
- most T₃ is produced in liver or by target cells removing an iodine from circulating T₄
- $-95\% T_{4}$ and $5\% T_{3}$

Hormone Receptors

- hormones stimulate only those cells that have receptors for them
- receptors are protein or glycoprotein molecules:
 - on plasma membrane, in the cytoplasm, or in the nucleus
- receptors act like switches turning on metabolic pathways when hormone binds to them
- usually each target cell has a few thousand receptors for a given hormone
- receptor-hormone interactions exhibit specificity and saturation
 - specific receptor for each hormone
 - saturated when all receptor molecules are occupied by hormone molecules

Hormone Mode of Action

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 17.20

hydrophobic hormones

- penetrate plasma
 membrane and enter
 nucleus
- act directly on the genes changing target cell physiology
- estrogen, progesterone, thyroid hormone act on nuclear receptors
- take several hours to days to show effect due to lag for protein synthesis

hydrophilic hormones

- cannot penetrate into target cell
- must stimulate physiology indirectly

Thyroid Hormone

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 17.21

- thyroid hormone enters target cell by diffusion – mostly as T₄ with little metabolic effect
- within target cell, T₄ is converted to more potent T₃
- T₃ enters target cells and binds to receptors in chromatin
- activates genes
 - make a muscle protein

 (myosin) enhancing cardiac
 muscle response to
 sympathetic stimulation
 - strengthening heartbeat

17-57

Peptides and Catecholamines: Hydrophilic

- hormone binds to cell-surface receptor
- receptor linked to second messenger system on other side of the membrane
- activates G protein which
- activates adenylate cyclase
- produces cAMP
- activates or inhibits enzymes
- metabolic reactions:
 - synthesis
 - secretion
 - change membrane potentials

- 1 Hormone–receptor binding activates a G protein.
- 2 G protein activates adenylate cyclase
- 3 Adenylate cyclase produces cAMP.

4 cAMP activates protein kinases.

- 5 Protein kinases phosphorylate enzymes. This activates some enzymes and deactivates others.
- 6 Activated enzymes catalyze metabolic reactions with a wide range of possible effects on the cell.

Enzyme Amplification

- hormones are extraordinarily potent chemicals
- one hormone molecule can trigger the synthesis of many enzyme molecules.
- very small stimulus can produce very large effect
- circulating concentrations very low

Modulation of Target Cell Sensitivity

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

High receptor density Reduced receptor density Diminished response Strong response Reduced sensitivity

(b) Down-regulation

- target cell sensitivity adjusted by changing the number of receptors
- up-regulation means number of receptors is increased
 - sensitivity is increased
- down-regulation reduces number of receptors
 - cell less sensitive to hormone
 - happens with long-term exposure to high hormone concentrations

Hormone Interactions

 most cells sensitive to more than one hormone and exhibit interactive effects

synergistic effects

- multiple hormones act together for greater effect
 - synergism between FSH and testosterone on sperm production

permissive effects

- one hormone enhances the target organ's response to a second later hormone
 - estrogen prepares uterus for action of progesterone

antagonistic effects

- one hormone opposes the action of another
 - insulin lowers blood glucose and glucagon raises it

Hormone Clearance

- hormone signals must be turned off when they have served their purpose
- most hormones are taken up and degraded by liver and kidney
 - excreted in bile or urine
- metabolic clearance rate (MCR)
 - rate of hormone removal from the blood
 - half-life time required to clear 50% of hormone from the blood
 - faster the MCF, the shorter is the half-life

Endocrine Disorders

- hyposecretion inadequate hormone release
- hypersecretion excessive hormone release

Pituitary Disorders

- hypersecretion of growth hormone (GH)
 - acromegaly thickening of bones and soft tissues in adults
 - especially hands, feet and face
 - problems in childhood or adolescence
 - gigantism if hypersecretion
 - pituitary dwarfism if hyposecretion rare since growth hormone is now made by genetically engineered bacteria

Age 9

Age 16

Age 33

Age 52

Thyroid Gland Disorders

- congenital hypothyroidism (decreased TH)
 - hyposecretion present a birth
 - treat with oral thyroid hormone
- myxedema (decreased TH)
 - adult hypothyroidism
 - treat with oral thyroid hormone
- goiter any pathological enlargement of the thyroid gland
 - endemic goiter
 - dietary iodine deficiency, no TH, no feedback, increased TSH stimulates hypertrophy
 - toxic goiter (Graves disease)
 - autoantibodies mimic the effect of TSH on the thyroid causing hypersecretion
 - overgrown thyroid produces functional TH

Endemic Goiter

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

© CNR/Phototake

Figure 17.28

Parathyroid Disorders

hypoparathyroidism

- surgical excision during thyroid surgery
- fatal tetany in 3 4 days due to rapid decline in blood calcium level

hyperparathyroidism - excess PTH secretion

- parathyroid tumor
- bones become soft, fragile, and deformed
- Ca²⁺ and phosphate blood levels increase
- promotes renal calculi formation

Adrenal Disorders

- Cushing syndrome excess cortisol secretion
 - hyperglycemia, hypertension, weakness, edema
 - rapid muscle and bone loss due to protein catabolism
 - abnormal fat deposition

Diabetes Mellitus

- most prevalent metabolic disease in world
 - disruption of metabolism due to hyposecretion or inaction of insulin
 - symptoms:
 - polyuria (excess urine output), polydipsia (intense thirst) and polyphagia (hunger)
 - revealed by elevated blood glucose, glucose in urine and ketones in the urine

Types of Diabetes Mellitus

- Type 1 (IDDM) 5 to 10% of cases in US
 - insulin is always used to treat Type 1
 - insulin injections, insulin pump, or dry insulin inhaler
 - monitoring blood glucose levels and controlled diet
 - hereditary susceptibility if infected with certain viruses (rubella, cytomegalovirus)
 - autoantibodies attack and destroy pancreatic beta cells
- **Type 2** (NIDDM) 90 to 95% of diabetics
 - problem is insulin resistance
 - failure of target cells to respond to insulin
 - risk factors are heredity, age (40+), obesity, and ethnicity Native
 American, Hispanic, and Asian
 - treated with weight loss program and exercise
 - oral medications improve insulin secretion or target cell sensitivity

Pathology of Diabetes

- pathogenesis: cells cannot absorb glucose, must rely on fat and proteins for energy needs - weight loss and weakness
 - fat catabolism increases free fatty acids and ketones in blood
 - ketonuria irregular heartbeat, and neurological issues
 - ketoacidosis gasping breathing and diabetic coma
- chronic pathology (chronic hyperglycemia)
 - leads to neuropathy and cardiovascular damage from atherosclerosis and microvascular disease
 - arterial damage in retina and kidneys (common in type I), atherosclerosis leads to heart failure (common in type II)
 - diabetic neuropathy nerve damage from impoverished blood flow can lead to erectile dysfunction, incontinence, poor wound healing, and loss of sensation from area