DNA Molecular Structure

- DNA deoxyribonucleic acid a long threadlike molecule with uniform diameter, but varied length
 - 46 DNA molecules in the nucleus of most human cells
 - total length of 2 meters
 - average DNA molecule 2 inches long
- DNA and other nucleic acids are polymers of nucleotides
- Each nucleotide consists of
 - one sugar deoxyribose
 - one phosphate group
 - one nitrogenous base
 - Either pyrimidine (single carbon-nitrogen ring) or purine (double ring)

Figure 4.1a

(a)

Nitrogenous Bases of DNA

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- Purines double ring
 - Adenine (A)Guanine (G)
- **Pyrimidines** single ring
 - Cytosine (C)
 - -Thymine (T)
- DNA bases ATCG

DNA Structure

- Molecular shape is a double helix (resembles a spiral staircase)
 - each sidepiece is a backbone composed of phosphate groups alternating with the sugar deoxyribose.
 - steplike connections between the backbones are pairs of nitrogen bases

Figure 4.2

Sugar-phosphate

backbone

Hydrogen bond

Sugar-phosphate

backbone

(a)

(b)

Complementary Base Pairing

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- Nitrogenous bases united by hydrogen bonds
 - a purine on one backbone with a pyrimidine on the other
 - A T two hydrogen bonds
 - **C G** three hydrogen bonds
- DNA base pairing
 - A T
 - C G
- Law of Complementary Base Pairing
 - one strand determines base sequence of other

Δ_Δ

DNA Function

- Genes genetic instructions for synthesis of proteins
- Gene segment of DNA that codes for a specific protein
- Genome all the genes of one person
 - -humans have estimated 25,000 to 35,000 genes
 - 2% of total DNA
 - other 98% is noncoding DNA
 - plays role in chromosome structure
 - regulation of gene activity
 - no function at all "junk" DNA

Chromatin and Chromosomes

 chromatin – fine filamentous DNA material complexed with proteins Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 4.4b 4-6

Cells Preparing to Divide

- exact copies are made of all the nuclear DNA
- each chromosome consists of two parallel filaments of identical DNA sister chromatids
- in prophase, final coiling and condensing
 - now visible with light microscope
- final compaction enables the two sister chromatids to be pulled apart and carried to separate daughter cells without damage to the DNA
 - joined at centromere
 - kinetochore protein plaques on either side of the centromere

RNA: Structure and Function

- **RNA** smaller than DNA (fewer bases)
 - messenger RNA (mRNA) over 10,000 bases
 - ribosomal RNA (rRNA)
 - transfer RNA (tRNA) 70 90 bases
 - DNA averages 100 million base pairs

• one nucleotide chain (not a double helix as DNA)

- ribose replaces deoxyribose as the sugar
- uracil replaces thymine as a nitrogenous base
- Essential function
 - interprets code in DNA
 - uses those instructions for protein synthesis
 - leaves nucleus and functions in cytoplasm

What is a Gene?

- Previous definition gene a segment of DNA that carries the code for a particular protein???
 - Body has millions of proteins but only 35,000 genes?
 - Small % of genes produce only RNA molecules
 - Some segments of DNA belong to 2 different genes
- Current Definition gene an information-containing segment of DNA that codes for the production of a molecule of RNA that plays a role in synthesizing one or more proteins
- Amino acid sequence of a protein is determined by the nucleotide sequence in the DNA

Human Genome

- **Genome** all the DNA in one 23-chromosome set
 - 3.1 billion nucleotide pairs in human genome
- 46 human chromosomes comes in two sets of 23 chromosomes
 - one set of 23 chromosomes came form each parent
 - each pair of chromosomes has same genes but different versions (alleles) exist
- Human Genome Project (1990-2003) identified the nitrogenous base sequences of 99% of the human genome
 - genomics the comprehensive study of the whole genome and how its genes and noncoding DNA interact to affect the structure and function of the whole organism.

Human Genome

• Findings of Human Genome Project

- Homo sapiens has only about 25,000 to 35,000 genes
 - not the 100,000 formerly believed
- genes generate millions of different proteins
 - not the old one gene one protein theory
 - single gene can code for many different proteins
- genes average about 3,000 bases long
 - range up to 2.4 million bases
- all humans are at least 99.99% genetically identical
 - 0.01% variations that we can differ from one another in more than 3 million base pairs
 - various combinations of these single-nucleotide polymorphisms account for all human variation
- some chromosomes are gene-rich and some gene-poor
- we now know the locations of more than 1,400 disease-producing mutations

Genetic Code

- body can make millions of different proteins, all from the same 20 amino acids, and encoded by genes made of just 4 nucleotides (A,T,C,G)
- **Genetic code** a system that enables these 4 nucleotides to code for the amino acid sequence of all proteins
- minimum code to symbolize 20 amino acids is 3 nucleotides per amino acid
- Base triplet a sequence of 3 DNA nucleotides that stands for one amino acid
 - **codon** the 3 base sequence in mRNA
 - 64 possible codons available to represent the 20 amino acids
 - 61 code for amino acids
 - Stop Codons UAG, UGA, and UAA signal the 'end of the message', like a period at the end of a sentence
 - Start Codon AUG codes for methionine , and begins the amino acid sequence of the protein

Overview of Protein Synthesis

- all body cells, except sex cells and some immune cells, contain identical genes.
- different genes are activated in different cells
- any given cell uses 1/3 to 2/3rds of its genes
 - rest remain dormant and may be functional in other types of cells

activated gene

- **messenger RNA** (mRNA) a mirror-image copy of the gene is made
 - migrates from the nucleus to cytoplasm
 - its code is read by the ribosomes
- ribosomes cytoplasmic granules composed of ribosomal RNA (rRNA) and enzymes
- transfer RNA (tRNA) delivers amino acids to the ribosome
- ribosomes assemble amino acids in the order directed by the codons of mRNA

Summary of Protein Synthesis

- process of protein synthesis
 DNA mRNA protein
- transcription step from DNA to mRNA
 occurs in the nucleus where DNA is located
- translation step from mRNA to protein
 - most occurs in cytoplasm
 - -15-20% of proteins are synthesized in the nucleus

Transcription

- **Transcription** copying genetic instructions from DNA to RNA
- RNA Polymerase enzyme that binds to the DNA and assembles the mRNA
 - The start and end of the gene are determined by codes in the DNA sequence.

Translation

- translation the process that converts the language of nucleotides into the language of amino acids
- ribosomes translate sequence of nucleotides into the sequence of amino acids
 - occur mainly in cytosol, on surface of rough ER, and nuclear envelope
 - consists of two granular subunits, large and small
 - each made of several rRNA and enzyme molecules

Translation of mRNA

- ribosome pulls mRNA molecule through it like a ribbon, reading the bases as it goes
 - when start codon (AUG) is reached, protein synthesis begins
 - all proteins begin with **methionine** when first synthesized

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Translation

- requries the participation of transfer RNA (tRNA)
 - one end of the tRNA includes three nucleotides called an anticodon
 - other end has binding site specific for one amino acid
 - ribosome binds and holds tRNA with its specific amino acid
 - ribosome contains an enzyme that forms peptide bond that links amino acids together

Review of Peptide Formation

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

DNA double helix

Seven base triplets on the template strand of DNA

AUG	GCG	GGA	ACG	CAU	GAG	UGA)
"Start"						"Stop"	

3 The corresponding codons of mRNA transcribed from the DNA triplets

The anticodons of tRNA that bind to the mRNA codons

Figure 4.10

- 5 The amino acids carried by those six tRNA molecules
- 6 The amino acids linked into a peptide chain

Gene Regulation

 genes are turned on and off from day to day

• their products are need or not

 many genes are permanently turned off in any given cell

DNA Replication and Cell Cycle

- before cells divide, it must duplicate its DNA so it can give a complete copy of all its genes to each daughter cell.
- since DNA controls all cellular function, this replication process must be very exact
- Law of Complementary Base Pairing we can predict the base sequence of one DNA strand if we know the sequence of the other
 - enables a cell to reproduce one strand based on the information in another

DNA Replication

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 4.14

Steps of DNA Replication

Double helix unwinds from histones

enzyme **DNA helicase** opens one short segment of helix at a time -exposing its nitrogen bases

replication fork – the point where the DNA is opened up (like two separated halves of a zipper)

DNA polymerase molecules move along each strand -read the exposed bases -matches complementary free nucleotides

the two separated strands of DNA are copied by separate polymerase molecules proceeding in opposite directions

-the polymerase molecule moving toward the replication fork makes a

long, continuous, new strand of DNA

-the polymerase molecule moving away from the replication fork makes short segments of DNA at a time...**DNA ligase** joins then**4-25** together

Steps of DNA Replication

from the old *parental DNA* molecule, two new *daughter* DNA molecules are made

semiconservative replication - each daughter DNA consists of one new helix synthesized from free nucleotides and one old helix conserved from the parental DNA

new histones are synthesized in cytoplasm

- -millions of histones are transported into the nucleus within a few minutes after DNA replication
- -each new DNA helix wraps around them to make a new nucleosome

each DNA polymerase works at a rate of 100 base pairs per second

-would take weeks for one polymerase to replicate one chromosome

-thousands of polymerase molecules work simultaneously on each DNA molecule

10. all 46 chromosomes are replicated in 6 - 8 hours

Errors and Mutations

- **DNA polymerase** does make mistakes
 - multiple modes for correction of replication errors
 - double checks the new base pair and tend to replace incorrect, biochemically unstable pairs with more stable correct pairs
 - result is only 1 error per 1 billion bases replicated
- mutations changes in DNA structure due to replication errors or environmental factors (radiation, viruses, chemicals)
 - some mutations cause no ill effects. others kill the cell, turn it cancerous or cause genetic defects in future generations.