Histology

- 50 trillion cells of 200 different cell types
- four broad categories of tissues
 - epithelial tissue
 - connective tissue
 - nervous tissue
 - muscular tissue
- organ structure with discrete boundaries that is composed of two or more tissue types
- histology (microscopic anatomy) the study of tissues and how they are arranged into organs

The Primary Tissue Classes

- tissue a group of similar cells and cell products that arise from the same region of the embryo and work together to perform a specific structural or physiological role in an organ.
- four primary tissues differ from one another in the:
 - types and functions of their cells
 - the characteristics of the matrix (extracellular material)
 - the relative amount of space occupied by cells versus matrix
- matrix (extracellular material) is composed of :
 - fibrous proteins
 - a clear gel known as ground substance, tissue fluid, extracellular fluid (ECF), interstitial fluid, or tissue gel

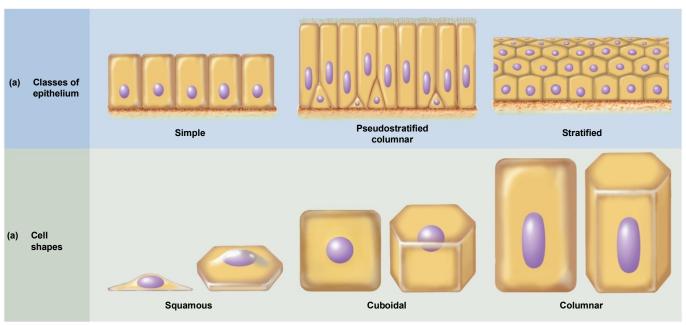
Epithelial Tissue

- consists of a flat sheet of closely adhering cells
- one or more cells thick
- upper surface usually exposed to the environment or an internal space in the body
- covers body surface
- lines body cavities
- forms the external and internal linings of many organs
- constitutes most glands
- extracellular material is so thin it is not visible with a light microscope
- epithelia allows no room for blood vessels
- lie on a layer of loose connective tissue and depend on its blood vessels for nourishment and waste removal

Basement Membrane

- basement membrane layer between an epithelium and the underlying connective tissue
 - anchors the epithelium to the connective tissue below it
- basal surface surface of an epithelial cell that faces the basement membrane
- apical surface surface of an epithelial cell that faces away from the basement membrane

Simple vs. Stratified Epithelia

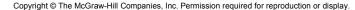

Simple epithelium

- contains one layer of cells
- named by shape of cells
- all cells touch the basement membrane

Stratified epithelium

- contains more than one layer
- named by shape of apical cells
- some cells rest on top of others
 and do not touch basement

membrane



5-5

Simple Epithelia

- four types of simple epithelia
- three named for their cell shapes
 - simple squamous (thin scaly cells)
 - simple cuboidal (square or round cells)
 - simple columnar (tall narrow cells)
- fourth type
 - pseudostratified columnar
 - not all cells reach the free surface
 - shorter cells are covered over by taller ones
 - looks stratified
 - every cell reaches the basement membrane
- goblet cells wineglass-shaped mucus secreting cells in simple columnar and pseudostratified epithelia

Simple Squamous Epithelium

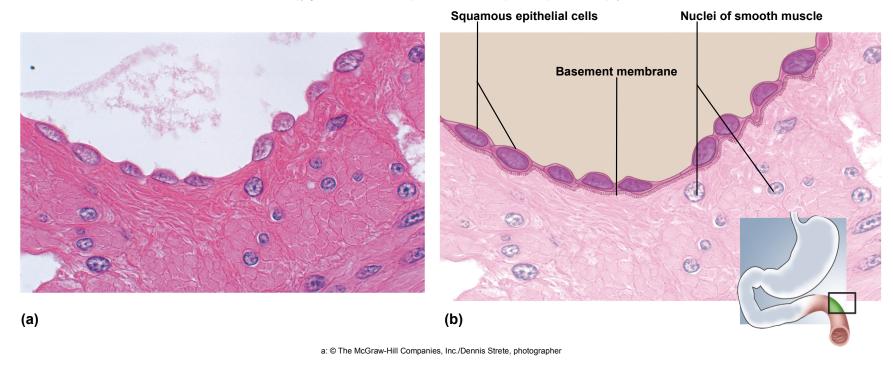


Figure 5.4a

Figure 5.4b,i

- single row of thin cells
- permits rapid diffusion or transport of substances
- secretes serous fluid
- alveoli, glomeruli, endothelium, and serosa

Simple Cuboidal Epithelium

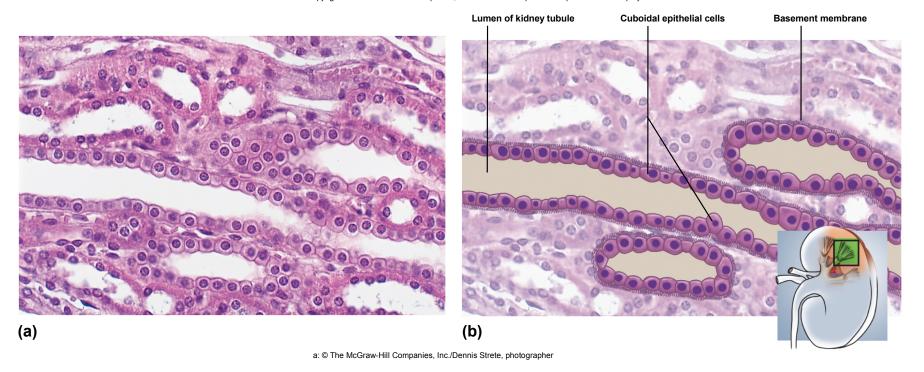


Figure 5.5a

Figure 5.5b,i

- single layer of square or round cells
- absorption and secretion, mucus production and movement
- liver, thyroid, mammary and salivary glands, bronchioles, and kidney tubules

Simple Columnar Epithelium

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

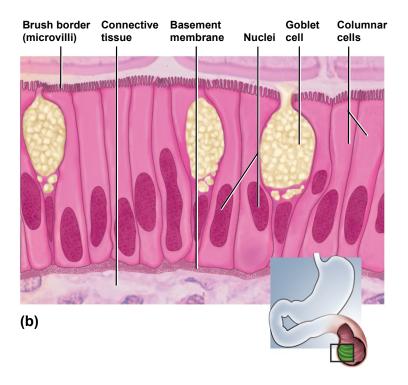


Figure 5.6b,i

- single row tall, narrow cells
 - oval nuclei in basal half of cell
 - brush border of microvilli, ciliated in some organs, may possess goblet cells
- absorption and secretion; mucus secretion
- lining of GI tract, uterus, kidney and uterine tubes

Pseudostratified Epithelium

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

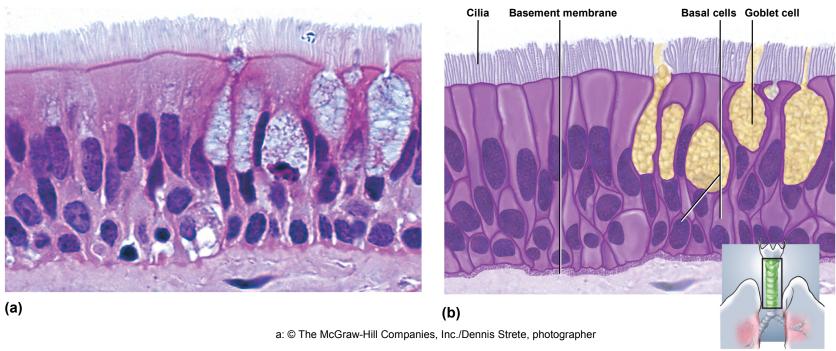
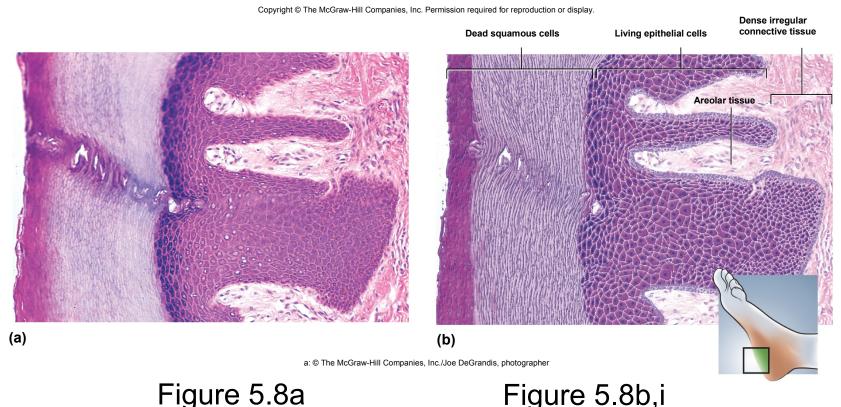


Figure 5.7a


Figure 5.7b,i

- looks multilayered; some not reaching free surface; all touch basement membrane
 - nuclei at several layers
 - with cilia and goblet cells
- secretes and propels mucus
- respiratory tract and portions of male urethra

Stratified Epithelia

- range from 2 to 20 or more layers of cells
- some cells resting directly on others
- only the deepest layer attaches to the basement membrane
- three stratified epithelia are named for the shapes of their surface cells
 - stratified squamous
 - stratified cuboidal
 - stratified columnar (rare)
- fourth type
 - transitional epithelium
- most widespread epithelium in the body
- deepest layers undergo continuous mitosis
 - their daughter cells push toward the surface and become flatter as they migrate farther upward
 - finally die and flake off exfoliation or desquamation
- two kinds of stratified squamous epithelia
 - keratinized found on skin surface, abrasion resistant
 - nonkeratinized lacks surface layer of dead cells

Keratinized Stratified Squamous

- multiple cell layers with cells becoming flat and scaly toward surface
- epidermis; palms and soles heavily keratinized
- resists abrasion; retards water loss through skin; resists penetration by pathogenic organisms

Nonkeratinized Stratified Squamous

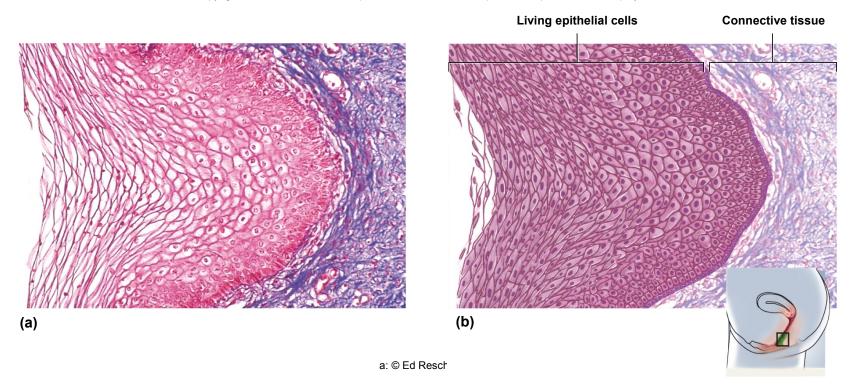


Figure 5.9a

Figure 5.9b,i

- same as keratinized epithelium without the surface layer of dead cells
- tongue, oral mucosa, esophagus and vagina
- resists abrasion and penetration of pathogens

Stratified Cuboidal Epithelium

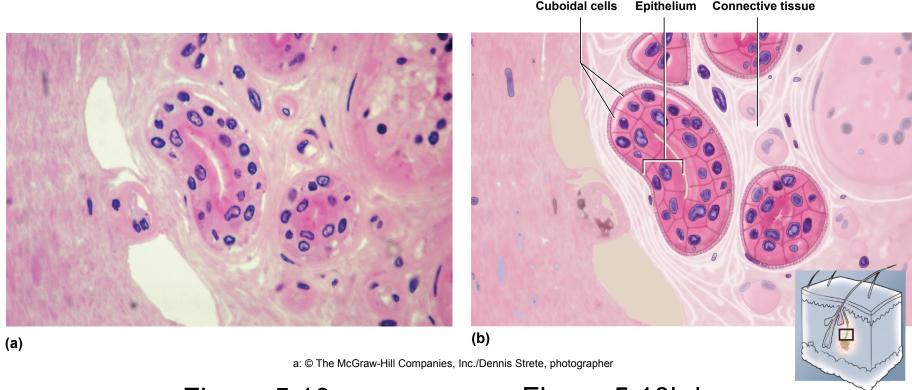


Figure 5.10a

Figure 5.10b,i

- two or more cell layers; surface cells square or round
- secretes sweat; sperm production and produces ovarian hormones
- sweat gland ducts; ovarian follicles and seminiferous tubules

Transitional Epithelium

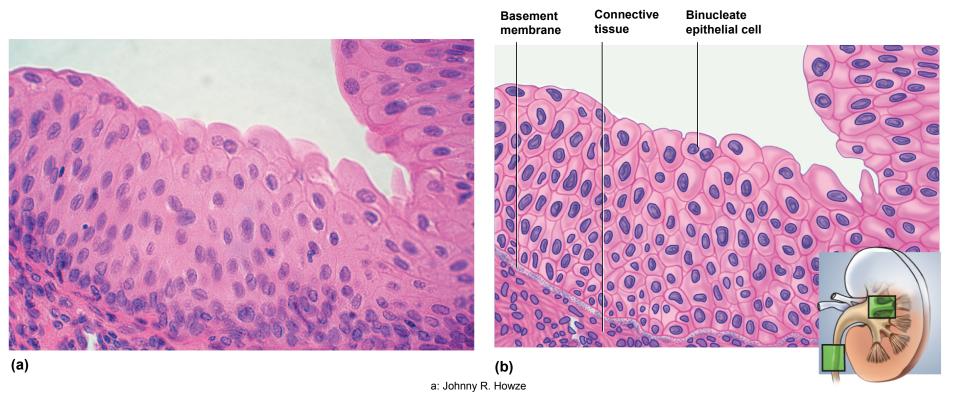


Figure 5.11a

Figure 5.11b,i

- multilayered epithelium surface cells that change from round to flat when stretched
- allows for filling of urinary tract
- ureter and bladder

Connective Tissue

- connective tissue a type of tissue in which cells usually occupy less space than the extracellular material
- binds organs to each other
- support and protect organs
- most cells of connective tissue are not in direct contact with each other
 - separated by extracellular material
- highly vascular richly supplied with blood vessels
- most abundant, widely distributed, and histologically variable of the primary tissues

Functions of Connective Tissue

- binding of organs tendons and ligaments
- support bones and cartilage
- physical protection cranium, ribs, sternum
- immune protection white blood cells attack foreign invaders
- movement bones provide lever system
- storage fat, calcium, phosphorus
- heat production metabolism of brown fat in infants
- transport blood

Components of Fibrous Connective Tissue

cells

- fibroblasts produce fibers and ground substance
- Immune system cells
- adipocytes store triglycerides (fat molecules)

Components of Fibrous Connective Tissue

fibers

collagenous fibers

- most abundant of the body's proteins 25%
- tough, flexible, and resist stretching
- tendons, ligaments, and deep layer of the skin are mostly collagen
- less visible in matrix of cartilage and bone

- reticular fibers

- thin collagen fibers coated with glycoprotein
- form framework of such organs as spleen and lymph nodes

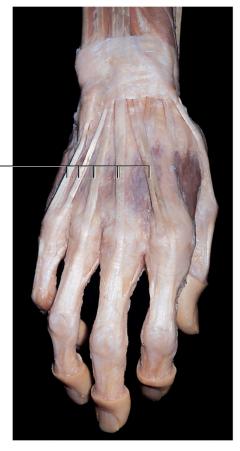
elastic fibers

- thinner than collagenous fibers
- made of protein called elastin
- allows stretch and recoil

Components of Fibrous Connective Tissue

- ground substance
 - usually a gelatinous to rubbery consistency resulting from three classes of large molecules
 - glycosaminoglycans (GAG)
 - long polysaccharide
 - proteoglycan
 - gigantic molecule
 - adhesive glycoproteins bind components of tissues together

Types of Fibrous Connective Tissue


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

loose connective tissue

- much gel-like ground substance between cells
- types
 - areolar
 - reticular

dense connective tissue

- fibers fill spaces between cells
- types vary in fiber orientation
 - dense regular connective tissue
 - dense irregular connective tissue

© The McGraw-Hill Companies, Inc./Rebecca Gray, photographer/Don Kincaid, dissections

Figure 5.13

Areolar Tissue

- loosely organized fibers, abundant blood vessels, and a lot of seemingly empty space
- fibers run in random directions
 - mostly collagenous, but elastic and reticular also present
- found in tissue sections from almost every part of the body
 - surrounds blood vessels and nerves
- nearly every epithelium rests on a layer of areolar tissue
 - blood vessels provide nutrition to epithelium and waste removal
 - ready supply of infection fighting leukocytes that move about freely in areolar tissue

Areolar Tissue

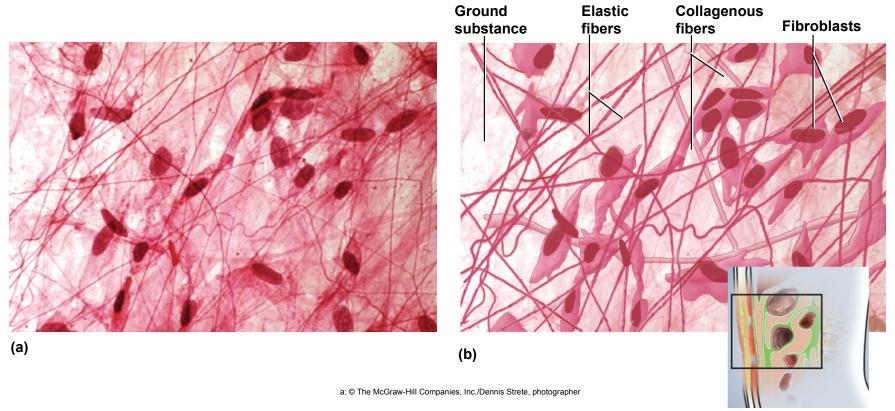
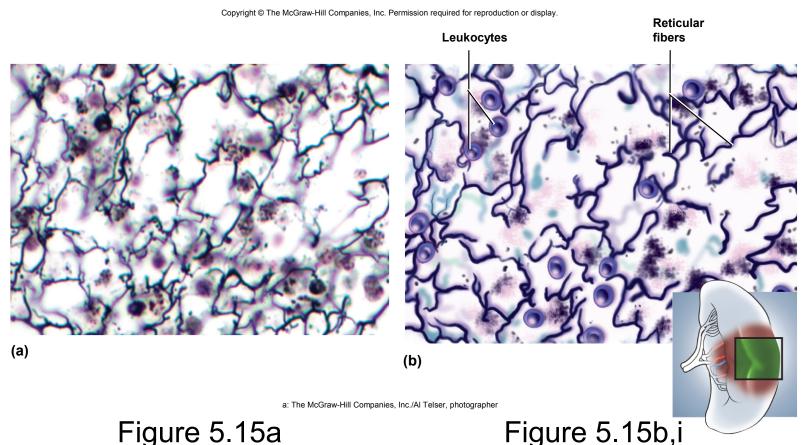



Figure 5.14a

Figure 5.14b,i

- loosely organized fibers, abundant blood vessels, and a lot of seemingly empty space
- underlies all epithelia, in serous membranes, between muscles, passageways for nerves and blood vessels

Reticular Tissue

mesh of reticular fibers and fibroblasts

- forms supportive stroma (framework) for lymphatic organs
- found in lymph nodes, spleen, thymus and bone marrow

Dense Regular Connective Tissue

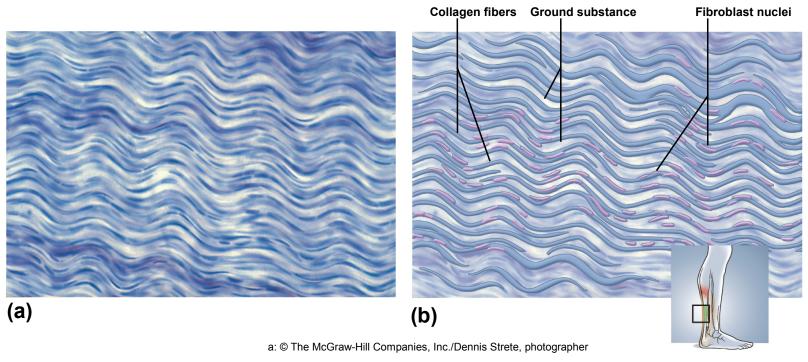


Figure 5.16a

Figure 5.16b,i

- densely, packed, parallel collagen fibers
 - compressed fibroblast nuclei
- tendons attach muscles to bones and ligaments hold bones together

Dense Irregular Connective Tissue

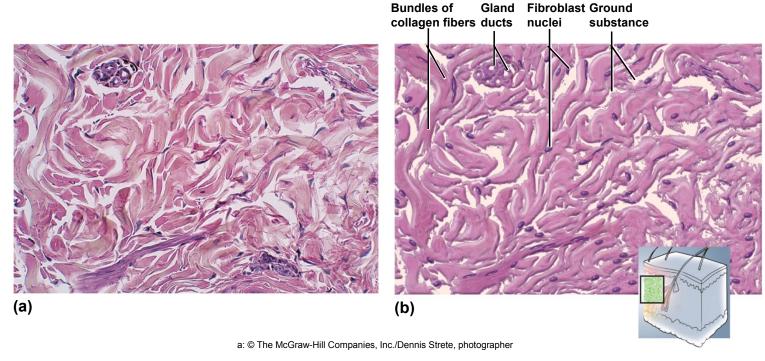


Figure 5.17a

Figure 5.17b,i

- densely packed, randomly arranged, collagen fibers and few visible cells
 - withstands unpredictable stresses
 - deeper layer of skin; capsules around organs

Adipose Tissue

- adipose tissue (fat) tissue in which adipocytes are the dominant cell type
- space between adipocytes is occupied by areolar tissue, reticular tissue, and blood capillaries
- fat is the body's primary energy reservoir
- provides thermal insulation
- anchors and cushions organs such as eyeball, kidneys
- most adult fat is called white fat
- **brown fat –** in fetuses, infants, children a heat generating tissue

Adipose Tissue

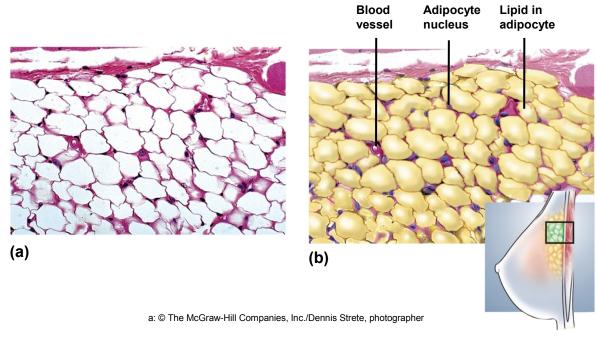


Figure 5.18a

Figure 5.18b,i

- empty-looking cells with thin margins; nucleus pressed against cell membrane
- energy storage, insulation, cushioning
 - subcutaneous fat and organ packing
 - brown fat (hibernating animals) produces heat

Cartilage

- supportive connective tissue with flexible, rubbery matrix
- gives shape to ear, tip of nose, and larynx
- chondroblasts produce matrix and surround them selves until they become trapped in little cavities (lacunae)
- chondrocytes cartilage cells in lacunae
- No blood vessels
 - diffusion brings nutrients and removes wastes
 - heals slowly
- matrix rich in chondroitin sulfate and contain collagen fibers

Hyaline Cartilage

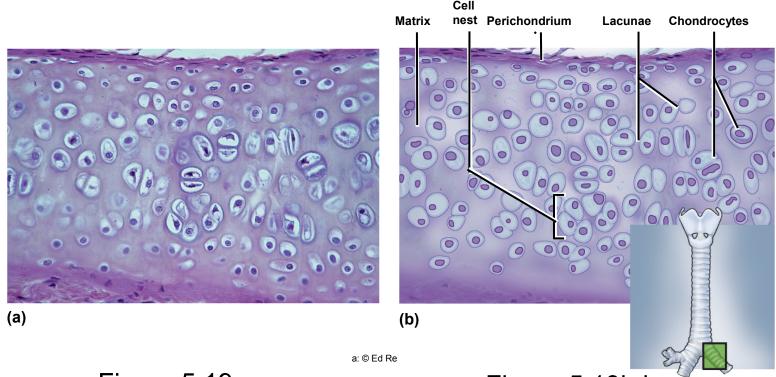


Figure 5.19a

Figure 5.19b,i

- clear, glassy microscopic appearance because of unusual fineness of the collagen fibers
- usually covered by perichondrium
- articular cartilage, costal cartilage, trachea, larynx, fetal skeleton
- eases joint movement, holds airway open, moves vocal cords during speech

Elastic Cartilage

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

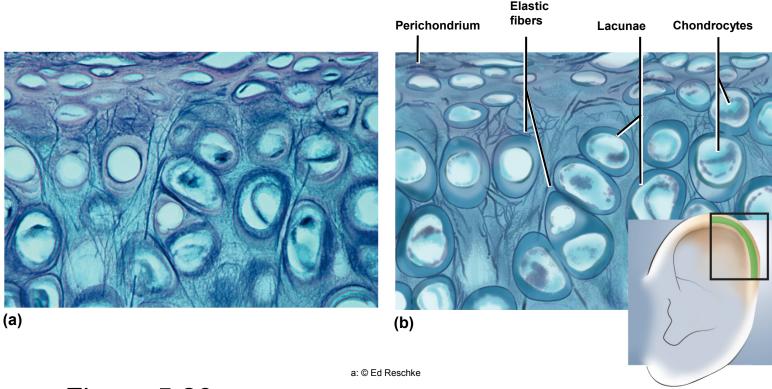


Figure 5.20a

Figure 5.20b,i

- cartilage containing elastic fibers
- covered with perichondrium
- provides flexible, elastic support
 - external ear and epiglottis

Fibrocartilage

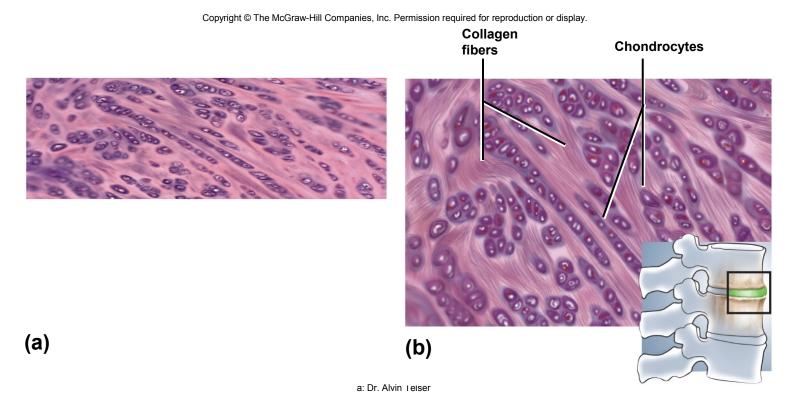


Figure 5.21a

Figure 5.21b,i

- cartilage containing large, coarse bundles of collagen fibers
- never has perichondrium
- resists compression and absorbs shock
 - pubic symphysis, menisci, and intervertebral discs

Bone

- two forms of osseous tissue
 - spongy bone spongy in appearance
 - delicate struts of bone trabeculae
 - covered by compact bone
 - found in heads of long bones and in middle of flat bones such as the sternum
 - compact bone denser calcified tissue with no visible spaces
 - more complex arrangement
 - cells and matrix surround vertically oriented blood vessels in long bones

Bone Tissue (compact bone)

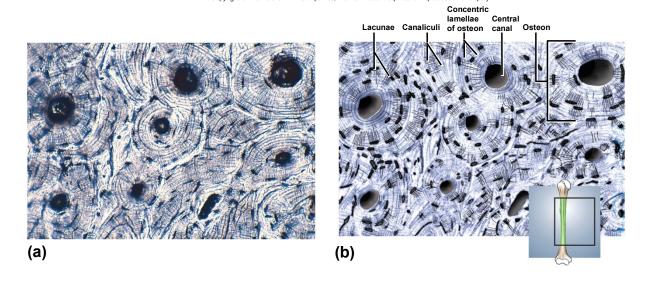


Figure 5.22a

Figure 5.22b,i

 most compact bone is arranged in cylinders that surround central (haversian or osteonic) canals that run longitudinally through shafts of long bones

a: © The McGraw-Hill Companies, Inc./Dennis Strete, photograph

- blood vessels and nerves travel through central canal
- bone matrix deposited in concentric lamella
 - onionlike layers around each central canal
- osteon central canal and its surrounding lamellae
- osteocytes mature bone cells that occupy the lacunae
- canaliculi delicate canals that radiate from each lacuna to its neighbors, and allows osteocytes to contact each other
- periosteum tough fibrous connective tissue covering of the bone as a whole -34

Blood

- fluid connective tissue
- transports cells and dissolved matter from place to place
- plasma blood's liquid ground substance
- formed elements cells and cell fragments
 - erythrocytes red blood cells – transport O2 and CO2
 - leukocytes white blood cells – defense against infection and other diseases
 - platelets cell fragments involved in clotting and other mechanisms

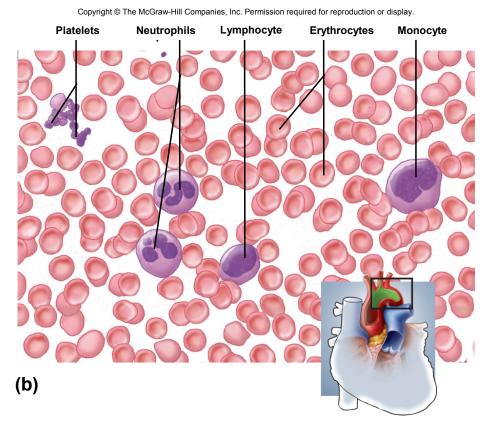


Figure 5.23b,i

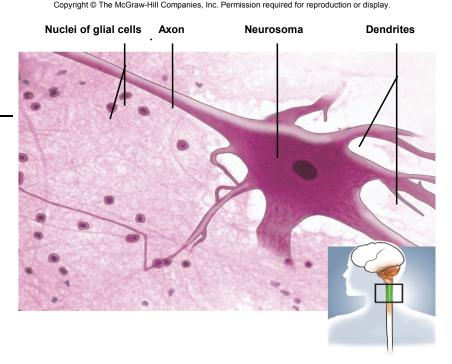
Excitable Tissues Muscular & Nervous Tissue

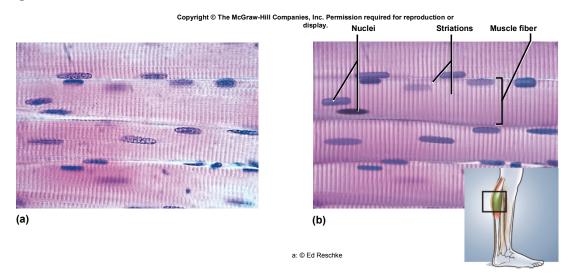
- excitability a characteristic of all living cells
 - developed to highest degree in nervous and muscular tissues
- membrane potential electrical charge difference (voltage) that occurs across the plasma membranes is the basis for their excitation
 - respond quickly to outside **stimulus** by means of changes in membrane potential
 - nerves changes result in rapid transmission of signals to other cells
 - muscles changes result in contraction, shortening of the cell

Nervous Tissue

(b)

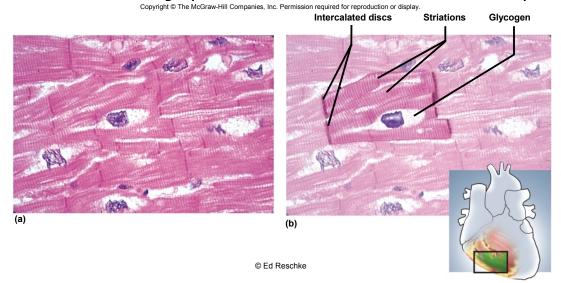
- nervous tissue specialized for communication by electrical and chemical signals
- consists of neurons (nerve cells)
 - detect stimuli
 - respond quickly
 - transmit coded information rapidly to other cells
- and neuroglia (glial)
 - protect and assist neurons
 - 'housekeepers' of nervous system
- neuron parts
 - neurosoma (cell body)
 - houses nucleus and other organelles
 - cell's center of genetic control and protein synthesis
 - dendrites
 - multiple short, branched processes
 - · receive signals from other cells
 - transmit messages to neurosoma
 - axon (nerve fiber)
 - sends outgoing signals to other cells
 - can be more than a meter long




Figure 5.24b,i

Muscular Tissue

- muscular tissue elongated cells that are specialized to contract in response to stimulation
- primary job is to exert physical force on other tissues and organs
- creates movements involved in body and limb movement, digestion, waste elimination, breathing, speech, and blood circulation
- important source of body heat
- three types of muscle: skeletal, cardiac, and smooth


Skeletal Muscle

- long, threadlike cells muscle fibers
- most attach to bone
- exceptions in tongue, upper esophagus, facial muscles, some
 sphincter muscles (ringlike or cufflike muscles that open and close body passages)
- contains multiple nuclei adjacent to plasma membrane
- striations alternating dark and light bands
- voluntary conscious control over skeletal muscles

Cardiac Muscle

- limited to the heart
- myocytes or cardiocytes are much shorter, branched, and notched at ends
- contain one centrally located nucleus surrounded by light staining glycogen
- intercalated discs join cardiocytes end to end
 - provide electrical and mechanical connection
- striated, and involuntary (not under conscious control)

5-40

Smooth Muscle

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

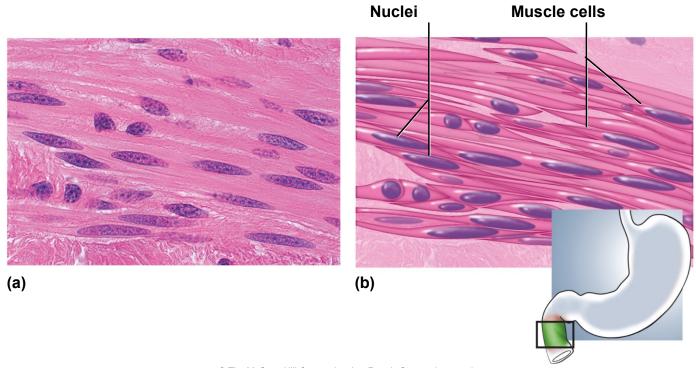


Figure 5.27a

a: © The McGraw-Hill Companies, Inc./Dennis Strete, photographer

Figure 5.27b,i

- lacks striations and is involuntary
- relatively short, fusiform cells (thick in middle, tapered at ends)
- one centrally located nucleus
- visceral muscle forms layers of digestive, respiratory, and urinary tract: blood vessels, uterus and other viscera
- propels contents through an organ, regulates diameter of blood vessels

Membranes

- membranes line body cavities and cover their viscera
- cutaneous membrane the skin largest membrane in the body
 - stratified squamous epithelium (epidermis) over connective tissue (dermis)
 - relatively dry layer serves protective function
- mucous membrane (mucosa) lines passageways open to the external environment
- serous membrane (serosa) internal membrane
 - simple squamous epithelium over areolar tissue
 - produces serous fluid that arises from blood
 - covers organs and lines walls of body cavities
 - endothelium lines blood vessels and heart
 - mesothelium line body cavities (pericardium, peritoneum and pleura)
- synovial membrane lines joint cavities
 - connective tissue layer only, secretes synovial fluid

Mucous Membranes (Mucosa)

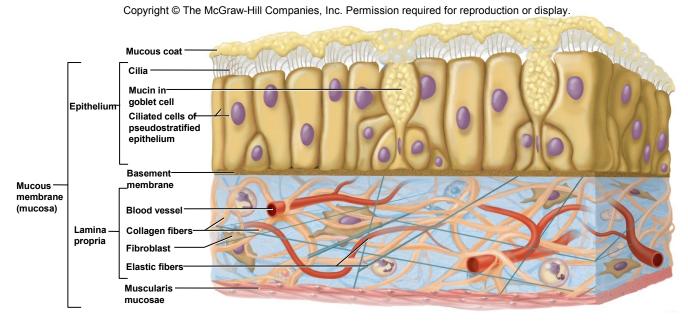


Figure 5.32

- lines passages that open to the external environment
 - digestive, respiratory, urinary, and reproductive tracts
- consists of two to three layers:
 - epithelium
 - lamina propria areolar connective tissue
 - muscularis mucosae smooth muscle layer
- absorptive, secretory, and protective functions
- covered with mucus

Tissue Growth

- tissue growth increasing the number of cells or the existing cells grow larger
- hyperplasia tissue growth through cell multiplication
- hypertrophy enlargement of preexisting cells
 - muscle grow through exercise
 - accumulation of body fat
- neoplasia development of a tumor (neoplasm)
 - benign or malignant
 - composed of abnormal, nonfunctional tissue

Tissue Repair

- regeneration replacement of dead or damaged cells by the same type of cell as before
 - restores normal function
 - skin injuries and liver regenerate
- fibrosis replacement of damaged cells with scar tissue
 - holds organs together
 - does not restore normal function
 - severe cuts and burns, healing of muscle injuries, scarring of lungs in tuberculosis