Transport in Animals

- Gastrovascular cavities
 - flatworms and cnidarians
- Nutrients and gases can move by processes such as diffusion and active transport.

(a) Planarian: gastrovascular cavity

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

b. c.

Open Circulatory systems

• Insects, other arthropods and most mollusks

No distinction between blood and the interstitial fluid

(b) Insect: open circulation

Open Circulatory systems

- Hemolymph
 - name of general body fluid
 - directly bathes the internal organs
- System of sinuses
- Heart and body movements cause circulation

Open Circulatory systems

- Slower circulation
- sluggish animals BUT...
 - Insects are very active

(a) Open circulatory system

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

(b) Closed circulatory system

Closed Circulatory Systems

- Earthworms, squids, octopuses, and vertebrates
- Blood is confined to vessels and is distinct from interstitial fluid
- Consists of the heart, blood vessels and blood

- Plasma about 55% of blood volume
 - 90% water
 - inorganic salts (electrolytes), metabolites
 (vitamins, aa, glucose), wastes & hormones
 - proteins
 - osmotic balance, viscosity
 - buffers, transport lipids, antibodies, clotting factors (fibrinogen)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 42.14x Blood smear

Cellular Elements:

- Red Blood Cells (<u>Erythrocytes</u>)
 - Most numerous (5-6 million in one cubic ml)
 - Transport oxygen & carbon dioxide

Cellular Elements:

- White Blood Cells (<u>Leukocytes</u>)
 - Function in body's defense
 - A cubic ml of blood has about 5,000 10,000
 - in interstitial fluid or in the lymphatic system –
 where your body fights pathogens

Cellular Elements:

Platelets are cell fragments that pinch off from larger cells in the bone marrow

-Function in the formation of blood clots

1. Vessel is damaged, exposing surrounding tissue to blood.

2. Platelets
adhere and
become
sticky, forming
a plug.

3. Cascade of enzymatic reactions is triggered by platelets, plasma factors, and damaged tissue.

4. Threads of fibrin trap erythrocytes and form a clot.

5. Once tissue damage is healed, the clot is dissolved.

Figure 42.16x Blood clot

Heart

• one atrium or two atria

one or two ventricles

Heart

- one atrium or two atria
 - chambers that receive blood returning to the heart
- one or two ventricles
 - chambers that pump blood out of the heart.

Blood vessels

- Arteries
 - branch into arterioles

Capillaries

- Veins
 - venules merge into veins

Blood vessels

- Arteries
 - branch into arterioles
 - carry blood away from heart
- Capillaries
 - materials are exchanged
- Veins
 - venules merge into veins
 - carry blood back toward heart

Blood Vessel Structure

- Walls of arteries or veins have three layers:
 - epithelium
 - **smooth muscle** with elastic fibers
 - connective tissue
 - Arteries have thicker walls than veins
- Capillaries only have the inner epithelium layer

Capillary Exchange

- Law of Continuity
 - blood flows slowly in capillaries because larger total cross-section
 - allows materials to be exchanged

Figure 42.10 The interrelationship of blood flow velocity, cross-sectional area of blood vessels, and blood pressure

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

Capillary Exchange

• About 85% of the fluid that exits capillaries re-enters at the venule end.

Return of Blood to Heart

- Pressure too low in veins
- contraction of skeletal muscles move blood
- one-way valves in veins prevent backflow

FISH

• Two chambered heart and a single circuit of blood flow

Vertebrate Circulatory Systems

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

AMPHIBIAN

• Three chambered heart (two atria and one ventricle) and double circulation (two circuits of flow)

Amphibian Circulation Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

a.

AMPHIBIAN

Pulmonary circuit

 blood is pumped to the lungs, where it is oxygenated and carried back to the left atrium

• Systemic circuit

 blood is pumped to the rest of the body, where it gives up oxygen and is carried back to the right atrium

AMPHIBIAN

- Double circulation assures a vigorous flow of blood to the vital organs
- single ventricle --some mixing of oxygen-rich and oxygen-poor blood.

MAMMALS & BIRDS

- Have a four chambered heart and double circulation
- The left side of the heart handles oxygenrich blood and the right side handles only oxygen-poor blood.

a.

Mammalian or Bird Heart

- Valves prevent backflow of blood when the ventricles contract
 - Between each ventricle and atrium is an atrioventricular (AV) valve
 - tricuspid and bicuspid (mitral)
 - At the exits of the heart are the semilunar valves

a.

The control of heart rhythm

Cardiac Cycle

- a complete sequence of the heart contracting to pump blood, relaxing to fill with blood.
- total length is about 0.8 s
 - The contraction phase is called systole
 - The relaxation phase is called diastole

Figure 42.6 The cardiac cycle

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

