Skeletal Muscle

 skeletal muscle - voluntary, striated muscle attached to one or more bones

- striations alternating light and dark transverse bands
 - results from an overlapping of internal contractile proteins
- voluntary usually subject to conscious control
- muscle cell, muscle fiber, (myofiber) as long as 30 cm

Figure 11.1

Structure of a Skeletal Muscle Fiber

The Muscle Fiber

- sarcolemma plasma membrane of a muscle fiber
- sarcoplasm cytoplasm of a muscle fiber
- myofibrils long protein bundles that occupies the main portion of the
 - sarcoplasm
 - glycogen stored in abundance to provide energy with heightened exercise
 - myoglobin red pigment stores oxygen needed for muscle activity
- sarcoplasmic reticulum (SR) smooth ER that forms a network around each myofibril – calcium reservoir
 - calcium activates the muscle contraction process

Thick Myofilaments

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Thin Myofilaments

Overlap of Thick and Thin Filaments

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(d) Portion of a sarcomere showing the overlap of thick and thin filaments

Regulatory and Contractile Proteins

- contractile proteins myosin and actin
 - do the work
- regulatory proteins tropomyosin and troponin
 - a switch that determine when the fiber can contract and when it cannot
 - contraction activated by release of calcium into sarcoplasm and its binding to troponin,
 - troponin changes shape and moves tropomyosin off the active sites on actin

Striations

Sarcomeres

- sarcomere segment from Z disc to Z disc
 - functional contractile unit of muscle fiber
- muscle cells shorten because their individual sarcomeres shorten
 - Z disc (Z lines) are pulled closer together as thick and thin filaments slide past each other
- neither thick nor thin filaments change length during shortening
 - only the amount of overlap changes
- during shortening dystrophin & linking proteins also pull on extracellular proteins
 - transfers pull to extracellular tissue

Accessory Proteins

- dystrophin most clinically important
 - links actin in outermost myofilaments to transmembrane proteins and eventually to fibrous endomysium surrounding the entire muscle cell
 - transfers forces of muscle contraction to connective tissue around muscle cell
 - genetic defects in dystrophin produce disabling disease muscular dystrophy

Figure 11.4

The Nerve-Muscle Relationship

- somatic motor neurons nerve cells whose cell bodies are in the brainstem and spinal cord that serve skeletal muscles
- somatic motor fibers —their axons that lead to the skeletal muscle
 - each nerve fiber branches out to a number of muscle fibers
 - each muscle fiber is supplied by only one motor neuron

Motor Units

- motor unit one nerve fiber and all the muscle fibers innervated by it
- muscle fibers of one motor unit
 - dispersed throughout the muscle
 - contract in unison
 - produce weak contraction over wide area
 - provides ability to sustain long-term contraction as motor units take turns contracting (postural control)
 - effective contraction usually requires the contraction of several motor units at once
- average motor unit 200 muscle fibers for each motor unit
- small motor units fine degree of control
 - 3-6 muscle fibers per neuron
 - eye and hand muscles
- large motor units more strength than control
 - powerful contractions supplied by large motor units gastrocnemius 1000 muscle fibers per neuron
 - many muscle fibers per motor unit

The Neuromuscular Junction

- synapse point where a nerve fiber meets its target cell
- neuromuscular junction (NMJ) when target cell is a muscle fiber
- one nerve fiber stimulates the muscle fiber at several points within the NMJ

Neuromuscular Junction - LM

Components of Neuromuscular Junction

- synaptic knob swollen end of nerve fiber
 - contains synaptic vesicles filled with acetylcholine (ACh)
- synaptic cleft tiny gap between synaptic knob and muscle sarcolemma
- Schwann cell envelops & isolates all of the NMJ from surrounding tissue fluid
- synaptic vesicles undergo exocytosis releasing ACh into synaptic cleft
- 50 million ACh receptors proteins incorporated into muscle cell plasma membrane
 - junctional folds of sarcolemma beneath synaptic knob
 - increases surface area holding ACh receptors
 - lack of receptors leads to paralysis in disease myasthenia gravis
- **basal lamina** thin layer of collagen and glycoprotein separates Schwann cell and entire muscle cell from surrounding tissues
 - contains acetylcholinesterase (AChE) that breaks down ACh after contraction causing relaxation

Neuromuscular Junction

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 11.7b

11-17

Electrically Excitable Cells

- muscle fibers and neurons are electrically excitable cells
 - their plasma membrane exhibits voltage changes in response to stimulation
- in an unstimulated (resting) cell

- voltage (electrical potential) a difference in electrical charge from one point to another
- resting membrane potential about -90mV
 - maintained by sodium-potassium pump

Excitation of a Muscle Fiber

Excitation (steps 1 and 2)

Figure 11.8 (1-2)

- nerve signal opens voltage-gated calcium channels in synaptic knob
- calcium stimulates exocytosis of ACh from synaptic vesicles
- ACh released into synaptic cleft

Excitation (steps 3 and 4)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 11.8 (3-4)

- two ACh molecules bind to each receptor protein, opening Na⁺ and K⁺ channels.
- Na⁺ enters shifting RMP goes from -90mV to +75mV, then K⁺ exits and RMP returns to -90mV - quick voltage shift is called an end-plate potential (EPP).

Excitation (step 5)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5 Opening of voltage-regulated ion gates; creation of action potentials

Figure 11.8 (5)

voltage change (EPP) in end-plate region opens nearby voltage-gated channels producing an action potential that spreads over muscle surface.

Excitation-Contraction Coupling in Skeletal Muscle

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 11.9 (6-9)

Excitation-Contraction Coupling (steps 6 and 7)

Figure 11.9 (6-7)

- action potential spreads down into T tubules
- opens voltage-gated ion channels in T tubules and Ca⁺² channels in SR
- Ca⁺² enters the cytosol

Excitation-Contraction Coupling (steps 8 and 9)

Ca²⁺ Troponin
Tropomyosin
Actin Thin filament

Binding of calcium
to troponin
Tropomyosin

Shifting of tropomyosin;
exposure of active sites
on actin

Figure 11.9 (8-9)

- calcium binds to troponin in thin filaments
- troponin-tropomyosin complex changes shape and exposes active sites on actin

Contraction (steps 10 and 11)

- myosin ATPase enzyme in myosin head hydrolyzes an ATP molecule
- activates the head "cocking" it in an extended position
 - ADP + P_i remain attached
- head binds to actin active site forming a myosin - actin cross-bridge

Contraction (steps 12 and 13)

- myosin head releases
 ADP and P_i, flexes pulling
 thin filament past thick power stroke
- upon binding more
 ATP, myosin releases actin
 and process is repeated
 - each head performs 5 power strokes per second
 - each stroke utilizes one molecule of ATP

Figure 11.10 (12-13)

Relaxation (steps 14 and 15)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

nerve stimulation & ACh release stop

- Figure 11.11 (14-15)
- AChE breaks down ACh & fragments reabsorbed into synaptic knob
- stimulation by ACh stops

Relaxation (step 16)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 11.11 (16)

- Ca⁺² pumped back into SR by active transport. Ca⁺² binds to calsequestrin while in storage in SR
- ATP is needed for muscle relaxation as well as muscle contraction.

Relaxation (steps 17 and 18)

- Ca⁺² removed from troponin is pumped back into SR
- tropomyosin reblocks the active sites
- muscle fiber ceases to produce or maintain tension
- muscle fiber returns to its resting length
 - due to recoil of elastic components & contraction of antagonistic muscles

Muscle Metabolism

- all muscle contraction depends on ATP
- ATP supply depends on availability of:
 - oxygen
 - organic energy sources such as glucose and fatty acids
- two main pathways of ATP synthesis
 - anaerobic fermentation
 - enables cells to produce ATP in the absence of oxygen
 - · yields little ATP and toxic lactic acid, a major factor in muscle fatigue
 - aerobic respiration
 - produces far more ATP
 - less toxic end products (CO₂ and water)
 - requires a continual supply of oxygen

Modes of ATP Synthesis During Exercise

Figure 11.18

Immediate Energy Needs

- short, intense exercise (100 m dash)
 - oxygen need is briefly supplied by myoglobin for a limited amount of aerobic respiration at onset – rapidly depleted
 - muscles meet most of ATP demand by borrowing phosphate groups (P_i) from other molecules and transferring them to ADP
- two enzyme systems control these phosphate transfers
 - myokinase transfers P_i from one ADP to another converting the latter to ATP
 - creatine kinase obtains P_i from a phosphate-storage molecule creatine phosphate (CP)
 - fast-acting system that helps maintain the ATP level while other ATP-generating mechanisms are being activated
- phosphagen system ATP and CP collectively
 - provides nearly all energy used for short bursts of intense activity

Immediate Energy Needs

Short-Term Energy Needs

- as the phosphagen system is exhausted
- muscles shift to anaerobic fermentation
 - muscles obtain glucose from blood and their own stored glycogen
 - in the absence of oxygen, glycolysis can generate a net gain of 2 ATP for every glucose molecule consumed
 - converts glucose to lactic acid

produces enough ATP for 30 – 40 seconds of maximum activity

Long-Term Energy Needs

- after 40 seconds or so, the respiratory and cardiovascular systems "catch up" and deliver oxygen to the muscles fast enough for aerobic respiration to meet most of the ATP demands
- aerobic respiration produces 36 ATP per glucose
 - efficient means of meeting the ATP demands of prolonged exercise
 - one's rate of oxygen consumption rises for 3 to 4 minutes and levels off to a steady state in which aerobic ATP production keeps pace with demand

Smooth Muscle

- fusiform shape
- Ca²⁺ comes from the ECF
- some smooth muscles lack nerve supply, while others receive autonomic fibers, not somatic motor fibers as in skeletal muscle
 - smooth muscle is **involuntary** and can contract without nervous stimulation
 - can contract in response to chemical stimuli
 - hormones, carbon dioxide, low pH, and oxygen deficiency
 - in response to stretch
- slow in comparison to skeletal muscle
 - Ca⁺² binds to calmodulin instead of troponin
- latch-bridge mechanism is resistant to fatigue
 - heads of myosin molecules do not detach from actin immediately
 - maintains tetanus tonic contraction (smooth muscle tone)
 - arteries vasomotor tone intestinal tone

Layers of Visceral Muscle

Contraction of Smooth Muscle

